Solve for [tex]\( f \)[/tex].

[tex]\[ 6f + 9g = 3g + f \][/tex]

A. [tex]\( f = \frac{-8g}{3} \)[/tex]

B. [tex]\( f = \frac{-6g}{5} \)[/tex]

C. [tex]\( f = \frac{-5g}{6} \)[/tex]

D. [tex]\( f = \frac{12g}{7} \)[/tex]



Answer :

To solve the equation [tex]\(0.6f + 9g = 3g + f\)[/tex] for [tex]\(f\)[/tex] in terms of [tex]\(g\)[/tex], we will follow these steps:

1. Rewrite the equation:
[tex]\[ 0.6f + 9g = 3g + f \][/tex]

2. Move all terms involving [tex]\(f\)[/tex] to one side and all terms involving [tex]\(g\)[/tex] to the other side:
[tex]\[ 0.6f + 9g - f = 3g \][/tex]
[tex]\[ 0.6f - f = 3g - 9g \][/tex]

3. Combine like terms:
[tex]\[ -0.4f = -6g \][/tex]

4. Solve for [tex]\(f\)[/tex]:
[tex]\[ f = \frac{-6g}{-0.4} \][/tex]

5. Simplify the fraction:
[tex]\[ f = \frac{-6g}{-0.4} = \frac{6g}{0.4} = \frac{6g}{\frac{2}{5}} = 6g \cdot \frac{5}{2} = 15g \][/tex]

Now we compare the calculated value of [tex]\(f\)[/tex] with the given choices:

1. [tex]\(f = \frac{-8g}{3}\)[/tex]
2. [tex]\(f = \frac{-6g}{5}\)[/tex]
3. [tex]\(f = \frac{-5g}{6}\)[/tex]
4. [tex]\(f = \frac{12g}{7}\)[/tex]

Notice that our calculated solution [tex]\(f = 15g\)[/tex] does not match any of the provided choices. Therefore, none of the given options is correct, based on our steps and calculation.