A satellite launch rocket has a cylindrical fuel tank. The fuel tank can hold [tex]V[/tex] cubic meters of fuel. If the tank measures [tex]d[/tex] meters across, what is the height of the tank in meters?

A. [tex]\frac{2V}{xd^2}[/tex]

B. [tex]\frac{4V}{d^2}[/tex]

C. [tex]\frac{V}{\pi c^2}[/tex]

D. [tex]\frac{4V}{\pi d^2}[/tex]

E. [tex]\frac{8V}{\pi d^2}[/tex]



Answer :

To determine the height of a cylindrical fuel tank that has a volume [tex]\( V \)[/tex] cubic meters and a diameter [tex]\( d \)[/tex] meters, we can use the formula for the volume of a cylinder. The volume [tex]\( V \)[/tex] of a cylinder is given by:

[tex]\[ V = \pi r^2 h \][/tex]

Where:
- [tex]\( r \)[/tex] is the radius of the cylindrical tank
- [tex]\( h \)[/tex] is the height of the cylindrical tank

Since the diameter [tex]\( d \)[/tex] of the cylinder is given, the radius [tex]\( r \)[/tex] can be obtained by:

[tex]\[ r = \frac{d}{2} \][/tex]

Substituting the radius into the volume formula, we get:

[tex]\[ V = \pi \left( \frac{d}{2} \right)^2 h \][/tex]

Simplifying the equation, we get:

[tex]\[ V = \pi \frac{d^2}{4} h \][/tex]

To solve for the height [tex]\( h \)[/tex], we rearrange the equation:

[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]

Thus, the height of the tank is:

[tex]\[ h = \frac{4V}{\pi d^2} \][/tex]

We need to match this result with the given options:

A. [tex]\(\frac{2 V}{x d^2}\)[/tex]
B. [tex]\(\frac{4 V}{d^2}\)[/tex]
C. [tex]\(\frac{V}{\pi c^2}\)[/tex]
D. [tex]\(\frac{4 V}{\pi d^2}\)[/tex]
E. [tex]\(\frac{8 V}{\pi d^2}\)[/tex]

The correct option that matches our derived formula is:

D. [tex]\(\frac{4 V}{\pi d^2}\)[/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{D. \frac{4 V}{\pi d^2}} \][/tex]