Fiona draws a circle with a diameter of 14 meters. What is the area of Fiona's circle?

A. [tex]7 \pi m^2[/tex]
B. [tex]14 \pi m^2[/tex]
C. [tex]28 \pi m^2[/tex]
D. [tex]49 \pi m^2[/tex]



Answer :

To determine the area of Fiona's circle, follow these steps:

1. Find the radius of the circle:
The diameter of the circle is given as 14 meters. The radius of a circle is half of its diameter.
[tex]\[ \text{Radius} = \frac{\text{Diameter}}{2} \][/tex]
Substituting the given diameter:
[tex]\[ \text{Radius} = \frac{14}{2} = 7 \; \text{meters} \][/tex]

2. Calculate the area of the circle:
The formula for the area [tex]\(A\)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
where [tex]\(r\)[/tex] is the radius of the circle.

Substituting the radius we found:
[tex]\[ A = \pi \times (7)^2 \][/tex]

3. Square the radius:
[tex]\[ (7)^2 = 49 \][/tex]

4. Multiply by [tex]\(\pi\)[/tex]:
[tex]\[ A = \pi \times 49 = 49 \pi \][/tex]

Thus, the area of Fiona's circle is:
[tex]\[ 49 \pi \; \text{square meters} \][/tex]

Therefore, the correct answer is:
[tex]\[ 49 \pi m^2 \][/tex]