Select the correct answer.

Given a prism with a right triangle base and the dimensions [tex]h=x+1[/tex], [tex]b=x[/tex], and [tex]l=x+7[/tex], what is a correct expression for the volume of the prism?

A. [tex]V=\frac{1}{2}(x^3 + 8x^2 + 7x)[/tex]
B. [tex]V=x^3 + 8x^2 + 7x[/tex]
C. [tex]V=x^2 + 8x + 7[/tex]
D. [tex]V=\frac{1}{3}(x^3 + 8x^2 + 7x)[/tex]



Answer :

To find the volume of a prism with a right triangle base, let's start with the general formula for the volume of a prism:

[tex]\[ V = \text{Base Area} \times \text{Height} \][/tex]

In this case, the base of the prism is a right triangle. The area [tex]\( \text{Base Area} \)[/tex] of a right triangle is given by:

[tex]\[ \text{Base Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]

For the given prism, let's define:
- [tex]\( \text{base} = b = x \)[/tex]
- [tex]\( \text{height} \)[/tex] of the triangle's base = [tex]\( h = x + 1 \)[/tex]

Thus, the area of the triangular base becomes:

[tex]\[ \text{Base Area} = \frac{1}{2} \times x \times (x + 1) \][/tex]

Now, the length [tex]\( l \)[/tex] of the prism is:

[tex]\[ l = x + 7 \][/tex]

To find the volume [tex]\( V \)[/tex] of the prism, multiply the base area by the length:

[tex]\[ V = \text{Base Area} \times l \][/tex]

[tex]\[ V = \left(\frac{1}{2} \times x \times (x + 1)\right) \times (x + 7) \][/tex]

Simplify inside the parentheses first:

[tex]\[ \frac{1}{2} \times x \times (x + 1) = \frac{1}{2} \left( x^2 + x \right) \][/tex]

Now multiply that by [tex]\( x + 7 \)[/tex]:

[tex]\[ V = \frac{1}{2} \left( x^2 + x \right) \times (x + 7) \][/tex]

Distribute [tex]\( \frac{1}{2}( x^2 + x) \)[/tex] over [tex]\( (x + 7) \)[/tex]:

[tex]\[ V = \frac{1}{2} \left( x^2 \cdot (x + 7) + x \cdot (x + 7) \right) \][/tex]

[tex]\[ V = \frac{1}{2} \left( x^3 + 7x^2 + x^2 + 7x \right) \][/tex]

[tex]\[ V = \frac{1}{2} \left( x^3 + 8x^2 + 7x \right) \][/tex]

[tex]\[ V = \frac{1}{2} x^3 + 4x^2 + \frac{7}{2}x \][/tex]

Thus, the simplified expression for the volume is:

[tex]\[ V = 0.5 \times x \times (x + 1) \times (x + 7) = \frac{1}{2} x^3 + 4x^2 + \frac{7}{2} x \][/tex]

To match it with the options provided:

The correct answer is:

A. [tex]\[ V = \frac{1}{2} \left( x^3 + 8x^2 + 7x \right) \][/tex]