Which matrix represents the system of equations shown below?

[tex]\[
\begin{aligned}
y & =10 \\
4x - 5y & =3
\end{aligned}
\][/tex]

A. [tex]\(\left[\begin{array}{ccc}0 & 1 & 3 \\ 4 & -5 & 10\end{array}\right]\)[/tex]

B. [tex]\(\left[\begin{array}{ccc}0 & -5 & 10 \\ 4 & 1 & 3\end{array}\right]\)[/tex]

C. [tex]\(\left[\begin{array}{ccc}0 & 1 & 10 \\ 4 & -5 & 3\end{array}\right]\)[/tex]

D. [tex]\(\left[\begin{array}{ccc}4 & 1 & 10 \\ 0 & -5 & 3\end{array}\right]\)[/tex]



Answer :

To form the augmented matrix that represents the system of equations given:

1. [tex]\[ y = 10 \][/tex]
2. [tex]\[ 4x - 5y = 3 \][/tex]

We need to express each equation in a way that aligns the coefficients of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and the constants on the right-hand side.

1. Rewriting the first equation [tex]\( y = 10 \)[/tex]:
[tex]\[ 0x + 1y = 10 \][/tex]
This indicates that the coefficient of [tex]\( x \)[/tex] is 0, the coefficient of [tex]\( y \)[/tex] is 1, and the constant term is 10.

2. The second equation [tex]\( 4x - 5y = 3 \)[/tex] already has the coefficients and constants clearly defined as:
[tex]\[ 4x + (-5)y = 3 \][/tex]
Here, the coefficient of [tex]\( x \)[/tex] is 4, the coefficient of [tex]\( y \)[/tex] is -5, and the constant term is 3.

Next, we assemble these coefficients into the augmented matrix form:
[tex]\[ \begin{array}{ccc|c} & x & y & \\ \hline 0 & 1 & | & 10 \\ 4 & -5 & | & 3 \\ \end{array} \][/tex]

This translates to:
[tex]\[ \left[\begin{array}{ccc} 0 & 1 & 10 \\ 4 & -5 & 3 \end{array}\right] \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{\left[\begin{array}{ccc}0 & 1 & 10 \\ 4 & -5 & 3\end{array}\right]} \][/tex]

Hence, the correct choice is:

C. [tex]\(\left[\begin{array}{ccc}0 & 1 & 10 \\ 4 & -5 & 3\end{array}\right]\)[/tex].