Answer :
Sure! Let's solve the given system of equations step-by-step.
We are given the following system:
[tex]\[ \begin{array}{r} 4x - y = 3 \\ 6x - 2y = 2 \end{array} \][/tex]
To find the solution, we can use matrix methods. Here's how we do it:
1. Write the system in matrix form:
[tex]\[ A \cdot \mathbf{x} = \mathbf{B} \][/tex]
where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the variable matrix, and [tex]\(\mathbf{B}\)[/tex] is the constant matrix.
[tex]\[ A = \begin{pmatrix} 4 & -1 \\ 6 & -2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \][/tex]
2. Solve the matrix equation [tex]\(A \cdot \mathbf{x} = \mathbf{B}\)[/tex]:
When we solve for [tex]\(\mathbf{x}\)[/tex], we get:
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 2, \, y = 5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
We are given the following system:
[tex]\[ \begin{array}{r} 4x - y = 3 \\ 6x - 2y = 2 \end{array} \][/tex]
To find the solution, we can use matrix methods. Here's how we do it:
1. Write the system in matrix form:
[tex]\[ A \cdot \mathbf{x} = \mathbf{B} \][/tex]
where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the variable matrix, and [tex]\(\mathbf{B}\)[/tex] is the constant matrix.
[tex]\[ A = \begin{pmatrix} 4 & -1 \\ 6 & -2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \][/tex]
2. Solve the matrix equation [tex]\(A \cdot \mathbf{x} = \mathbf{B}\)[/tex]:
When we solve for [tex]\(\mathbf{x}\)[/tex], we get:
[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \][/tex]
Thus, the solution to the system of equations is:
[tex]\[ x = 2, \, y = 5 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]