Using the matrix solver on your calculator, find the solution to the system of equations shown below.

[tex]\[
\begin{array}{r}
4x - y = 3 \\
6x - 2y = 2
\end{array}
\][/tex]

A. No solution
B. [tex]\(x = 5, y = 2\)[/tex]
C. More than 1 solution
D. [tex]\(x = 2, y = 5\)[/tex]



Answer :

Sure! Let's solve the given system of equations step-by-step.

We are given the following system:

[tex]\[ \begin{array}{r} 4x - y = 3 \\ 6x - 2y = 2 \end{array} \][/tex]

To find the solution, we can use matrix methods. Here's how we do it:

1. Write the system in matrix form:
[tex]\[ A \cdot \mathbf{x} = \mathbf{B} \][/tex]
where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the variable matrix, and [tex]\(\mathbf{B}\)[/tex] is the constant matrix.

[tex]\[ A = \begin{pmatrix} 4 & -1 \\ 6 & -2 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \][/tex]

2. Solve the matrix equation [tex]\(A \cdot \mathbf{x} = \mathbf{B}\)[/tex]:

When we solve for [tex]\(\mathbf{x}\)[/tex], we get:

[tex]\[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} \][/tex]

Thus, the solution to the system of equations is:

[tex]\[ x = 2, \, y = 5 \][/tex]

So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]