Table B: Effect of Mass on Temperature
[tex]\[T_i=25^{\circ} C; m_w=1.0\, \text{kg}; h=500\, \text{m}\][/tex]

\begin{tabular}{|c|c|c|c|c|}
\hline
\begin{tabular}{c}
[tex]$m_{C}$[/tex] \\
[tex]$(\text{kg})$[/tex]
\end{tabular} &
\begin{tabular}{c}
[tex]$T_{f}$[/tex] \\
[tex]$(^{\circ}C)$[/tex]
\end{tabular} &
\begin{tabular}{c}
[tex]$\Delta T$[/tex] \\
[tex]$(^{\circ}C)$[/tex]
\end{tabular} &
\begin{tabular}{c}
[tex]$P E E_g$[/tex] \\
[tex]$(\text{kJ})$[/tex]
\end{tabular} &
\begin{tabular}{c}
[tex]$\Delta H$[/tex] \\
[tex]$(\text{kJ})$[/tex]
\end{tabular} \\
\hline
1.0 & 26.17 & 1.17 & & \\
\hline
3.0 & 28.52 & 3.52 & & \\
\hline
6.0 & 32.03 & 7.03 & & \\
\hline
9.0 & 35.55 & 10.55 & & \\
\hline
\end{tabular}

Use the data provided to calculate the gravitational potential energy of each cylinder mass. Round your answers to the nearest tenth.

- 3 kg: [tex]$\square$[/tex] kJ
- 6 kg: [tex]$\square$[/tex] kJ
- 9 kg: [tex]$\square$[/tex] kJ



Answer :

To solve this problem, we're given the mass of the cylinders and the height. We need to calculate the gravitational potential energy for each mass. The formula for gravitational potential energy [tex]\( P.E \)[/tex] is given by:

[tex]\[ P.E = m \cdot g \cdot h \][/tex]

Where:
- [tex]\( m \)[/tex] is the mass in kilograms (kg)
- [tex]\( g \)[/tex] is the acceleration due to gravity, which is [tex]\( 9.8 \, \text{m/s}^2 \)[/tex]
- [tex]\( h \)[/tex] is the height in meters (m)

### Step-by-Step Solution:

1. Identify the values given:
- [tex]\( g = 9.8 \, \text{m/s}^2 \)[/tex]
- [tex]\( h = 500 \, \text{meters} \)[/tex]
- Masses [tex]\( m = 3 \, \text{kg} \)[/tex], [tex]\( 6 \, \text{kg} \)[/tex], and [tex]\( 9 \, \text{kg} \)[/tex]

2. Calculate the gravitational potential energy for each mass:
- For [tex]\( m = 3 \, \text{kg} \)[/tex]:
[tex]\[ P.E_{\text{3kg}} = 3 \cdot 9.8 \cdot 500 \][/tex]
[tex]\[ P.E_{\text{3kg}} = 14700 \, \text{J} \][/tex]
To convert joules (J) to kilojoules (kJ), we divide by 1000:
[tex]\[ P.E_{\text{3kg}} = \frac{14700}{1000} = 14.7 \, \text{kJ} \][/tex]

- For [tex]\( m = 6 \, \text{kg} \)[/tex]:
[tex]\[ P.E_{\text{6kg}} = 6 \cdot 9.8 \cdot 500 \][/tex]
[tex]\[ P.E_{\text{6kg}} = 29400 \, \text{J} \][/tex]
To convert joules (J) to kilojoules (kJ), we divide by 1000:
[tex]\[ P.E_{\text{6kg}} = \frac{29400}{1000} = 29.4 \, \text{kJ} \][/tex]

- For [tex]\( m = 9 \, \text{kg} \)[/tex]:
[tex]\[ P.E_{\text{9kg}} = 9 \cdot 9.8 \cdot 500 \][/tex]
[tex]\[ P.E_{\text{9kg}} = 44100 \, \text{J} \][/tex]
To convert joules (J) to kilojoules (kJ), we divide by 1000:
[tex]\[ P.E_{\text{9kg}} = \frac{44100}{1000} = 44.1 \, \text{kJ} \][/tex]

### Summary:
- Gravitational potential energy for [tex]\( 3 \, \text{kg} \)[/tex] mass is [tex]\( 14.7 \, \text{kJ} \)[/tex].
- Gravitational potential energy for [tex]\( 6 \, \text{kg} \)[/tex] mass is [tex]\( 29.4 \, \text{kJ} \)[/tex].
- Gravitational potential energy for [tex]\( 9 \, \text{kg} \)[/tex] mass is [tex]\( 44.1 \, \text{kJ} \)[/tex].

Thus:
- 3 kg: [tex]\( 14.7 \, \text{kJ} \)[/tex]
- 6 kg: [tex]\( 29.4 \, \text{kJ} \)[/tex]
- 9 kg: [tex]\( 44.1 \, \text{kJ} \)[/tex]