Select the correct answer.

Point [tex]\( R \)[/tex] divides [tex]\( \overline{EF} \)[/tex] in the ratio [tex]\( 1:5 \)[/tex]. If the coordinates of [tex]\( E \)[/tex] and [tex]\( F \)[/tex] are [tex]\( (4, 8) \)[/tex] and [tex]\( (11, 4) \)[/tex], respectively, what are the coordinates of [tex]\( R \)[/tex] to two decimal places?

A. [tex]\( (4.66, 7.62) \)[/tex]

B. [tex]\( (6, 6.86) \)[/tex]

C. [tex]\( (5.17, 7.33) \)[/tex]

D. [tex]\( (9.83, 4.67) \)[/tex]



Answer :

To find the coordinates of point [tex]\( R \)[/tex] that divides the line segment [tex]\( \overline{EF} \)[/tex] in the ratio 1:5, where [tex]\( E \)[/tex] and [tex]\( F \)[/tex] have coordinates [tex]\((4,8)\)[/tex] and [tex]\((11,4)\)[/tex] respectively, we use the section formula for internal division.

The section formula is given by:

[tex]\[ (x_R, y_R) = \left( \frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n} \right) \][/tex]

Here, [tex]\( (x_1, y_1) \)[/tex] are the coordinates of [tex]\( E \)[/tex] which are [tex]\((4,8)\)[/tex], and [tex]\( (x_2, y_2) \)[/tex] are the coordinates of [tex]\( F \)[/tex] which are [tex]\((11,4)\)[/tex]. The ratio [tex]\( m:n = 1:5 \)[/tex].

Substituting these values into the section formula:

[tex]\[ x_R = \frac{(1 \cdot 11) + (5 \cdot 4)}{1 + 5} = \frac{11 + 20}{6} = \frac{31}{6} \approx 5.17 \][/tex]

[tex]\[ y_R = \frac{(1 \cdot 4) + (5 \cdot 8)}{1 + 5} = \frac{4 + 40}{6} = \frac{44}{6} \approx 7.33 \][/tex]

Thus, the coordinates of point [tex]\( R \)[/tex] are approximately [tex]\( (5.17, 7.33) \)[/tex].

So, the correct answer is:
C. [tex]\( (5.17, 7.33) \)[/tex]