Drag each set of coordinates to the correct location on the table. Not all sets of coordinates will be used.

Points that two lines pass through are given in the table. Match each point of intersection to the correct pair of lines.

[tex]$(1, -1), (-4, -7), (-5, -4), (4, 7)$[/tex]

\begin{tabular}{|c|c|c|}
\hline
Line 1 & Line 2 & Point of Intersection \\
\hline
[tex]$(2, 5), (-3, -5)$[/tex] & [tex]$(3, 0), (0, -3)$[/tex] & [tex]$(-4, -5)$[/tex] \\
\hline
[tex]$(1, 1), (2, 3)$[/tex] & [tex]$(0, 3), (2, 5)$[/tex] & \\
\hline
[tex]$(1, 0), (0, -1)$[/tex] & [tex]$(0, 3), (-2, -1)$[/tex] & \\
\hline
[tex]$(2, 0), (0, -2)$[/tex] & [tex]$(4, 5), (3, 3)$[/tex] & \\
\hline
\end{tabular}



Answer :

Let's fill in the table based on the given information.

### Given lines and their intersections:
1. The intersection point for lines [tex]\([(2, 5), (-3, -5)]\)[/tex] and [tex]\([(3, 0), (0, -3)]\)[/tex] is [tex]\((-4, -5)\)[/tex].
2. The intersection point for lines [tex]\([(1, 1), (2, 3)]\)[/tex] and [tex]\([(0, 3), (2, 5)]\)[/tex] is [tex]\((-3, -2)\)[/tex].
3. There are pairs of lines not used in the provided result and thus should not be added to the table.
4. The intersection point for lines [tex]\([(2, 0), (0, -2)]\)[/tex] and [tex]\([(4, 5), (3, 3)]\)[/tex] is [tex]\( (3, 4) \)[/tex].

Using this information, we can fill in the table as follows:

### Filled Table:

[tex]\[ \begin{tabular}{|c|c|c|} \hline Line 1 & Line 2 & Point of Intersection \\ \hline (2,5),(-3,-5) & (3,0),(0,-3) & (-4,-5) \\ \hline (1,1),(2,3) & (0,3),(2,5) & (-3,-2) \\ \hline (1,0),(0,-1) & (0,3),(-2,-1) & --- \\ \hline (2,0),(0,-2) & (4,5),(3,3) & (3,4) \\ \hline \end{tabular} \][/tex]

Therefore, the lines and their points of intersection are correctly matched.