```markdown
\begin{tabular}{|c|c|c|}
\hline
Rome & [tex]$\checkmark$[/tex] & \\
\hline
Tokyo & [tex]$\checkmark$[/tex] & \\
\hline
Houston & [tex]$\checkmark$[/tex] & \\
\hline
Peru & & [tex]$\checkmark$[/tex] \\
\hline
Miami & [tex]$\checkmark$[/tex] & \\
\hline
Toronto & [tex]$\checkmark$[/tex] & [tex]$\checkmark$[/tex] \\
\hline
Canada & & [tex]$\checkmark$[/tex] \\
\hline
\end{tabular}

Let event [tex]$A=$[/tex] The place is a city.
Let event [tex]$B=$[/tex] The place is in North America.

Which outcomes are in [tex]$A$[/tex] or [tex]$B$[/tex]?

A. \{Rome, Tokyo, Houston, Miami, Toronto\}
B. (Houston, Miami, Toronto)
C. \{Houston, Miami, Toronto, Canada\}
D. \{Rome, Tokyo, Houston, Miami, Toronto, Canada\}
```



Answer :

To solve the problem of identifying the outcomes that are in event [tex]\(A\)[/tex] (places that are cities) or event [tex]\(B\)[/tex] (places that are in North America), we will use the information given in the table and follow a set theory approach.

First, we define the sets for events [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:

1. Event [tex]\(A\)[/tex] (places that are cities):
[tex]\[ A = \{\text{Rome}, \text{Tokyo}, \text{Houston}, \text{Miami}, \text{Toronto}\} \][/tex]

2. Event [tex]\(B\)[/tex] (places that are in North America):
[tex]\[ B = \{\text{Houston}, \text{Peru}, \text{Miami}, \text{Toronto}, \text{Canada}\} \][/tex]

To find outcomes that are in [tex]\(A\)[/tex] or [tex]\(B\)[/tex], we need the union of sets [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A \cup B \][/tex]

The union of two sets includes all elements that are in either set, without duplicates. Therefore, we list all unique outcomes from both sets:

Combining the outcomes from set [tex]\(A\)[/tex] and set [tex]\(B\)[/tex]:

[tex]\[ \{\text{Rome}, \text{Tokyo}, \text{Houston}, \text{Miami}, \text{Toronto}\} \cup \{\text{Houston}, \text{Peru}, \text{Miami}, \text{Toronto}, \text{Canada}\} \][/tex]

Arrange all unique places:

[tex]\[ \{\text{Rome}, \text{Tokyo}, \text{Houston}, \text{Miami}, \text{Toronto}, \text{Peru}, \text{Canada}\} \][/tex]

So, the combined outcomes that are in event [tex]\(A\)[/tex] or event [tex]\(B\)[/tex] are:
[tex]\[ \{\text{Rome}, \text{Tokyo}, \text{Houston}, \text{Miami}, \text{Toronto}, \text{Canada}, \text{Peru}\} \][/tex]

Now, let's compare this result with the provided options:

A. \{Rome, Tokyo, Houston, Miami, Toronto\}

B. (Houston, Miami, Toronto)

C. \{Houston, Miami, Toronto, Canada\}

D. \{Rome, Tokyo, Houston, Miami, Toronto, Canada\}

The correct set of outcomes that are in [tex]\(A\)[/tex] or [tex]\(B\)[/tex] is:

[tex]\[ \{\text{Rome}, \text{Tokyo}, \text{Houston}, \text{Miami}, \text{Toronto}, \text{Canada}, \text{Peru}\} \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\text{D}} \][/tex]

This is because option D includes all places listed in either event [tex]\(A\)[/tex] (cities) or event [tex]\(B\)[/tex] (places in North America).