Evaluate the expression for [tex]p = -6[/tex], [tex]q = 6[/tex], and [tex]r = -17[/tex].

[tex]\[ \frac{\frac{q}{2} - \frac{r}{3}}{\frac{3p}{6} + \frac{q}{6}} \][/tex]

The answer is [tex]$\square$[/tex] (Type an integer or a simplified fraction)



Answer :

To evaluate the given expression:
[tex]\[ \frac{\frac{q}{2}-\frac{r}{3}}{\frac{3 p}{6}+\frac{q}{6}} \][/tex]
we need to determine the values of the inner fractions and then the overall expression. The constants are given as [tex]\( p = -6 \)[/tex], [tex]\( q = 6 \)[/tex], and [tex]\( r = -17 \)[/tex].

1. Calculate the numerator of the inner fraction:
[tex]\[ \frac{q}{2} - \frac{r}{3} \][/tex]
Substituting [tex]\( q = 6 \)[/tex] and [tex]\( r = -17 \)[/tex], we get:
[tex]\[ \frac{6}{2} - \frac{-17}{3} \][/tex]
Simplify the fractions:
[tex]\[ 3 + \frac{17}{3} \][/tex]
To combine these terms, express 3 as a fraction with a denominator of 3:
[tex]\[ 3 = \frac{9}{3} \][/tex]
Now, add the fractions:
[tex]\[ \frac{9}{3} + \frac{17}{3} = \frac{26}{3} \][/tex]

2. Calculate the denominator of the inner fraction:
[tex]\[ \frac{3 p}{6} + \frac{q}{6} \][/tex]
Substituting [tex]\( p = -6 \)[/tex] and [tex]\( q = 6 \)[/tex], we get:
[tex]\[ \frac{3 (-6)}{6} + \frac{6}{6} \][/tex]
Simplify these fractions:
[tex]\[ \frac{-18}{6} + \frac{6}{6} \][/tex]
Further simplification gives:
[tex]\[ -3 + 1 = -2 \][/tex]

3. Divide the numerator by the denominator:
[tex]\[ \frac{\frac{26}{3}}{-2} \][/tex]
This can be rewritten as:
[tex]\[ \frac{26}{3} \times \frac{1}{-2} = \frac{26}{3} \times \left( -\frac{1}{2} \right) \][/tex]

Multiply the fractions:
[tex]\[ \frac{26 \times -1}{3 \times 2} = \frac{-26}{6} \][/tex]

Simplify the fraction:
[tex]\[ \frac{-26}{6} = -\frac{13}{3} \][/tex]

Therefore, the solution to the expression given [tex]\( p = -6 \)[/tex], [tex]\( q = 6 \)[/tex], and [tex]\( r = -17 \)[/tex] is:
[tex]\[ - \frac{13}{3} \][/tex]