Calculate the population growth rate given the following:

[tex]\[
\begin{array}{l}
CBR = 2\% \quad IMA = 4\% \\
CDR = 3\% \quad EM = 5\%
\end{array}
\][/tex]

Fill in the first blank with the correct percentage.

[tex]\[
\begin{array}{c}
r = (CBR + IMA) - (CDR + EM) \\
r = (2\% + 4\%) - (3\% + 5\%)
\end{array}
\][/tex]



Answer :

To address this question, let's break down the variables and figure out the population growth rate step-by-step.

Given the following percentages:
- Crude Birth Rate (CBR) = 2%
- Immigration Rate (IMA) = 4%
- Crude Death Rate (CDR) = 3%
- Emigration Rate (EM) = 5%

The formula to calculate the population growth rate (r) is:
[tex]\[ r = (CBR + IMA) - (CDR + EM) \][/tex]

Now, we will substitute the given values into this formula.

1. Calculate the sum of the Crude Birth Rate (CBR) and the Immigration Rate (IMA):
[tex]\[ CBR + IMA = 2\% + 4\% = 6\% \][/tex]

2. Calculate the sum of the Crude Death Rate (CDR) and the Emigration Rate (EM):
[tex]\[ CDR + EM = 3\% + 5\% = 8\% \][/tex]

3. Subtract the sum of CDR and EM from the sum of CBR and IMA to find the population growth rate:
[tex]\[ r = (CBR + IMA) - (CDR + EM) \][/tex]
[tex]\[ r = 6\% - 8\% = -2\% \][/tex]

Thus, the correct percentage to fill in the blank is [tex]\(6\%\)[/tex]:
[tex]\[ r = (CBR + IMA) - (CDR + EM) \][/tex]
[tex]\[ r = (6\% +?) - (CDR + EM) \][/tex]
[tex]\[ r = (6\% +) - (+8\%) \][/tex]

The final population growth rate is -2%.