Answer :
Let's solve the question step-by-step.
### Step 1: Calculate [tex]\(H_2\)[/tex]
Multiply [tex]\(A6\)[/tex] by [tex]\(F3\)[/tex] and then add [tex]\(C5\)[/tex] to the product.
- [tex]\(A6 = 2\)[/tex]
- [tex]\(F3 = 3\)[/tex]
- [tex]\(C5 = 2\)[/tex]
Calculate the product:
[tex]\[ A6 \times F3 = 2 \times 3 = 6 \][/tex]
Now add [tex]\(C5\)[/tex]:
[tex]\[ 6 + 2 = 8 \][/tex]
So, [tex]\(H_2 = 8\)[/tex].
### Step 2: Calculate [tex]\(H_4\)[/tex]
Find the sum of [tex]\(A3 + B1 + C2 + D4\)[/tex].
- [tex]\(A3 = 6\)[/tex]
- [tex]\(B1 = 7\)[/tex]
- [tex]\(C2 = 5\)[/tex]
- [tex]\(D4 = 1\)[/tex]
Sum them up:
[tex]\[ 6 + 7 + 5 + 1 = 19 \][/tex]
So, [tex]\(H_4 = 19\)[/tex].
### Step 3: Calculate [tex]\(H_5\)[/tex]
Find the sum of [tex]\(A9 + F2\)[/tex].
- [tex]\(A9 = 3\)[/tex]
- [tex]\(F2 = 6\)[/tex]
Sum them up:
[tex]\[ 3 + 6 = 9 \][/tex]
So, [tex]\(H_5 = 9\)[/tex].
### Step 4: Calculate [tex]\(H_6\)[/tex]
Add [tex]\(H_4\)[/tex] and [tex]\(H_5\)[/tex] together.
[tex]\[ H_6 = H_4 + H_5 = 19 + 9 = 28 \][/tex]
So, [tex]\(H_6 = 28\)[/tex].
### Step 5: Comparison and Swap (if necessary)
Compare [tex]\(H_6\)[/tex] and [tex]\(H_2\)[/tex].
- [tex]\(H_2 = 8\)[/tex]
- [tex]\(H_6 = 28\)[/tex]
Since [tex]\(H_6\)[/tex] is not smaller than [tex]\(H_2\)[/tex], no swapping is needed.
### Step 6: Calculate [tex]\(I_2\)[/tex]
Multiply [tex]\(H_2\)[/tex] by [tex]\(H_5\)[/tex], then take away [tex]\(H_4\)[/tex].
[tex]\[ H_2 \times H_5 = 8 \times 9 = 72 \][/tex]
Subtract [tex]\(H_4\)[/tex]:
[tex]\[ 72 - 19 = 53 \][/tex]
So, [tex]\(I_2 = 53\)[/tex].
Given the numerical result we have obtained for each step, there seems to be a disconnect with the final question asking for the value of "12." Given no specific context other than interpreting [tex]\( I_2 \)[/tex] as the final value derived:
The correct value for [tex]\( I_2 \)[/tex] based on our calculations is:
[tex]\[ \boxed{53} \][/tex]
However, considering the options given in the question [tex]\((84, 74, 54, 64)\)[/tex], none match the calculated [tex]\( I_2 \)[/tex] value of 53.
If you are looking for [tex]\(I_2\)[/tex], it's the value we've calculated: [tex]\(53\)[/tex]. Among the provided options, the closest (though not matching) would be [tex]\(54\)[/tex].
Given the discrepancy, the exact match is [tex]\(53\)[/tex], and the practical answer from the available choices would be:
[tex]\[ \boxed{54} \][/tex]
### Step 1: Calculate [tex]\(H_2\)[/tex]
Multiply [tex]\(A6\)[/tex] by [tex]\(F3\)[/tex] and then add [tex]\(C5\)[/tex] to the product.
- [tex]\(A6 = 2\)[/tex]
- [tex]\(F3 = 3\)[/tex]
- [tex]\(C5 = 2\)[/tex]
Calculate the product:
[tex]\[ A6 \times F3 = 2 \times 3 = 6 \][/tex]
Now add [tex]\(C5\)[/tex]:
[tex]\[ 6 + 2 = 8 \][/tex]
So, [tex]\(H_2 = 8\)[/tex].
### Step 2: Calculate [tex]\(H_4\)[/tex]
Find the sum of [tex]\(A3 + B1 + C2 + D4\)[/tex].
- [tex]\(A3 = 6\)[/tex]
- [tex]\(B1 = 7\)[/tex]
- [tex]\(C2 = 5\)[/tex]
- [tex]\(D4 = 1\)[/tex]
Sum them up:
[tex]\[ 6 + 7 + 5 + 1 = 19 \][/tex]
So, [tex]\(H_4 = 19\)[/tex].
### Step 3: Calculate [tex]\(H_5\)[/tex]
Find the sum of [tex]\(A9 + F2\)[/tex].
- [tex]\(A9 = 3\)[/tex]
- [tex]\(F2 = 6\)[/tex]
Sum them up:
[tex]\[ 3 + 6 = 9 \][/tex]
So, [tex]\(H_5 = 9\)[/tex].
### Step 4: Calculate [tex]\(H_6\)[/tex]
Add [tex]\(H_4\)[/tex] and [tex]\(H_5\)[/tex] together.
[tex]\[ H_6 = H_4 + H_5 = 19 + 9 = 28 \][/tex]
So, [tex]\(H_6 = 28\)[/tex].
### Step 5: Comparison and Swap (if necessary)
Compare [tex]\(H_6\)[/tex] and [tex]\(H_2\)[/tex].
- [tex]\(H_2 = 8\)[/tex]
- [tex]\(H_6 = 28\)[/tex]
Since [tex]\(H_6\)[/tex] is not smaller than [tex]\(H_2\)[/tex], no swapping is needed.
### Step 6: Calculate [tex]\(I_2\)[/tex]
Multiply [tex]\(H_2\)[/tex] by [tex]\(H_5\)[/tex], then take away [tex]\(H_4\)[/tex].
[tex]\[ H_2 \times H_5 = 8 \times 9 = 72 \][/tex]
Subtract [tex]\(H_4\)[/tex]:
[tex]\[ 72 - 19 = 53 \][/tex]
So, [tex]\(I_2 = 53\)[/tex].
Given the numerical result we have obtained for each step, there seems to be a disconnect with the final question asking for the value of "12." Given no specific context other than interpreting [tex]\( I_2 \)[/tex] as the final value derived:
The correct value for [tex]\( I_2 \)[/tex] based on our calculations is:
[tex]\[ \boxed{53} \][/tex]
However, considering the options given in the question [tex]\((84, 74, 54, 64)\)[/tex], none match the calculated [tex]\( I_2 \)[/tex] value of 53.
If you are looking for [tex]\(I_2\)[/tex], it's the value we've calculated: [tex]\(53\)[/tex]. Among the provided options, the closest (though not matching) would be [tex]\(54\)[/tex].
Given the discrepancy, the exact match is [tex]\(53\)[/tex], and the practical answer from the available choices would be:
[tex]\[ \boxed{54} \][/tex]