The polynomial [tex]$8x^2 - 8x + 2 - 5 + x$[/tex] is simplified to [tex]$8x^2 - gx - h$[/tex]. What are the values of [tex]g[/tex] and [tex]h[/tex]?

A. [tex]g = -9[/tex] and [tex]h = 7[/tex]
B. [tex]g = 9[/tex] and [tex]h = -3[/tex]
C. [tex]g = -7[/tex] and [tex]h = 7[/tex]
D. [tex]g = 7[/tex] and [tex]h = 3[/tex]



Answer :

Let's begin by simplifying the given polynomial [tex]\( 8x^2 - 8x + 2 - 5 + x \)[/tex].

1. Combine like terms in the polynomial:
- The [tex]\( x^2 \)[/tex] term is [tex]\( 8x^2 \)[/tex].
- The [tex]\( x \)[/tex] terms are [tex]\( -8x \)[/tex] and [tex]\( x \)[/tex], which combine to be [tex]\( -8x + x = -7x \)[/tex].
- The constant terms are [tex]\( 2 \)[/tex] and [tex]\( -5 \)[/tex], which combine to be [tex]\( 2 - 5 = -3 \)[/tex].

So, the simplified polynomial is:

[tex]\[ 8x^2 - 7x - 3 \][/tex]

2. We need to compare this simplified polynomial to the form [tex]\( 8x^2 - gx - h \)[/tex]. From the comparison, we can easily identify the coefficients of [tex]\( x \)[/tex] and the constant term.

Thus:
- The coefficient of [tex]\( x \)[/tex], which is [tex]\( -g \)[/tex], must match the coefficient of [tex]\( x \)[/tex] from the simplified polynomial, [tex]\( -7 \)[/tex]. Therefore, [tex]\( g = 7 \)[/tex].
- The constant term, which is [tex]\( -h \)[/tex], must match the constant term from the simplified polynomial, [tex]\( -3 \)[/tex]. Therefore, [tex]\( h = 3 \)[/tex].

Hence, the values are:
[tex]\[ g = 7 \][/tex]
[tex]\[ h = 3 \][/tex]

So the correct answer is:

[tex]\[ g = 7 \text{ and } h = 3 \][/tex]