Use the Quotient Rule to find the derivative of [tex]$f(x)=\frac{4 x}{7 x-18}$[/tex].

A. [tex]\frac{x+72}{(7 x-18)^2}[/tex]
B. [tex]\frac{x-29}{(7 x-18)^2}[/tex]
C. [tex]-\frac{72}{(7 x-18)^2}[/tex]
D. [tex]\frac{29}{(7 x-18)^2}[/tex]



Answer :

To find the derivative of the given function [tex]\( f(x) = \frac{4x}{7x - 18} \)[/tex] using the Quotient Rule, we should follow these steps:

1. Identify the numerator and the denominator functions:
- [tex]\( u(x) = 4x \)[/tex]
- [tex]\( v(x) = 7x - 18 \)[/tex]

2. Recall the Quotient Rule:
The Quotient Rule states that if you have a function [tex]\( \frac{u(x)}{v(x)} \)[/tex], its derivative is given by:
[tex]\[ \left( \frac{u}{v} \right)' = \frac{u'v - uv'}{v^2} \][/tex]

where [tex]\( u' \)[/tex] is the derivative of [tex]\( u(x) \)[/tex] and [tex]\( v' \)[/tex] is the derivative of [tex]\( v(x) \)[/tex].

3. Calculate the derivatives of the numerator and the denominator:
- [tex]\( u'(x) = \frac{d}{dx} [4x] = 4 \)[/tex]
- [tex]\( v'(x) = \frac{d}{dx} [7x - 18] = 7 \)[/tex]

4. Apply the Quotient Rule:
[tex]\[ f'(x) = \frac{(4) \cdot (7x - 18) - (4x) \cdot (7)}{(7x - 18)^2} \][/tex]

5. Simplify the numerator:
[tex]\[ (4)(7x - 18) - (4x)(7) = 28x - 72 - 28x = -72 \][/tex]

6. Plug the simplified numerator back into the fraction:
[tex]\[ f'(x) = \frac{-72}{(7x - 18)^2} \][/tex]

So, the derivative [tex]\( f'(x) \)[/tex] of the function [tex]\( f(x) = \frac{4x}{7x - 18} \)[/tex] using the Quotient Rule is:
[tex]\[ -\frac{72}{(7x - 18)^2} \][/tex]

The correct answer is:
[tex]\[ -\frac{72}{(7x - 18)^2} \][/tex]