Which is the area between the [tex]x[/tex]-axis and [tex]y=x[/tex] from [tex]x=3[/tex] to [tex]x=6[/tex]?

A. [tex]\frac{6^3-3^3}{3}=63[/tex]

B. [tex]\frac{6^2+3^2}{2}=\frac{45}{2}[/tex]

C. [tex]\frac{6^2-3^2}{2}=\frac{27}{2}[/tex]

D. [tex]\frac{6^3+3^3}{3}=81[/tex]



Answer :

To find the area between the [tex]$x$[/tex]-axis and the graph of the function [tex]$y=x$[/tex] from [tex]$x=3$[/tex] to [tex]$x=6$[/tex], we integrate the function [tex]$y=x$[/tex] with respect to [tex]$x$[/tex] over the interval [tex]$[3, 6]$[/tex].

The integral of [tex]$y = x$[/tex] from [tex]$x=3$[/tex] to [tex]$x=6$[/tex] is given by:

[tex]\[ \int_{3}^{6} x \, dx \][/tex]

Using the power rule for integration, we have:

[tex]\[ \int x \, dx = \frac{x^2}{2} \][/tex]

Evaluating this integral from [tex]$x=3$[/tex] to [tex]$x=6$[/tex], we get:

[tex]\[ \left[ \frac{x^2}{2} \right]_{3}^{6} = \frac{6^2}{2} - \frac{3^2}{2} \][/tex]

Now we calculate the values:

[tex]\[ \frac{6^2}{2} = \frac{36}{2} = 18 \][/tex]

[tex]\[ \frac{3^2}{2} = \frac{9}{2} = 4.5 \][/tex]

Subtracting these results gives:

[tex]\[ 18 - 4.5 = 13.5 \][/tex]

Thus, the area between the [tex]$x$[/tex]-axis and the graph of [tex]$y = x$[/tex] from [tex]$x = 3$[/tex] to [tex]$x = 6$[/tex] is:

[tex]\[ \frac{6^2-3^2}{2}=\frac{27}{2}=13.5 \][/tex]

So the correct answer is [tex]\(13.5\)[/tex], confirming that:

[tex]\(\frac{6^2-3^2}{2} = \frac{27}{2} = 13.5\)[/tex].