Answer :

Certainly! Let's solve the inequality [tex]\((|| x-1|-2|-3)(|x-2|-3) \geq 0\)[/tex] step-by-step.

We need to analyze the expression and break it into manageable pieces. Let's do this step by step.

### Step 1: Simplify the Inner Absolute Values

Let's start by considering the inner absolute value expressions:

1. [tex]\(|x - 1|\)[/tex]:
This evaluates to:
[tex]\[ |x - 1| = \begin{cases} x - 1 & \text{if } x \geq 1 \\ 1 - x & \text{if } x < 1 \end{cases} \][/tex]

2. [tex]\(|x - 2|\)[/tex]:
This evaluates to:
[tex]\[ |x - 2| = \begin{cases} x - 2 & \text{if } x \geq 2 \\ 2 - x & \text{if } x < 2 \end{cases} \][/tex]

We need these intermediate results to proceed.

### Step 2: Simplify the Compound Expressions

For [tex]\(| | x-1| - 2 | \)[/tex], we consider:
Depending on the value of [tex]\( |x - 1| \)[/tex], evaluate:
[tex]\[ || x-1| - 2| = \begin{cases} |x - 3| & \text{if } |x - 1| \geq 2 \\ |3 - x| & \text{if } |x - 1| < 2 \end{cases} \][/tex]

For [tex]\(| | | x-1| - 2| - 3 | \)[/tex]:

Let's break it down as:

1. When [tex]\(|x - 1| \geq 2\)[/tex], which means [tex]\(x \leq -1\)[/tex] or [tex]\(x \geq 3\)[/tex]:
- [tex]\(|x - 1| - 2 = |x - 3|\)[/tex]
- [tex]\(|x - 3| - 3\)[/tex] evaluates to:
- If [tex]\(x \geq 3\)[/tex], [tex]\(|x - 3| = x - 3\)[/tex] and [tex]\(|x - 3| - 3 = x - 6\)[/tex].
- If [tex]\(x \leq -1\)[/tex], [tex]\(|x - 3| = 3 - x\)[/tex] and [tex]\(|(3 - x) - 3| = |3 - x - 3| = | - x| = |x|\)[/tex].

2. When [tex]\(|x - 1| < 2\)[/tex], which means [tex]\(-1 < x < 3\)[/tex]:
- [tex]\(|x - 1| - 2 = 2 - |x - 1|\)[/tex]
- [tex]\(| (2 - |x - 1|) - 3 | \)[/tex]

Which breaks down to [tex]\(|-1 + |x - 1||\)[/tex], and can be simplified further:
- If [tex]\(-1 < x < 1\)[/tex], then [tex]\(|x - 1| = 1 - x\)[/tex], so expression is [tex]\(|-1 + (1 - x)| = |-x| = |x|\)[/tex].
- If [tex]\(1 \le x < 3\)[/tex], then [tex]\(|x - 1| = x - 1\)[/tex], so expression is [tex]\(|-1 + (x - 1)| = |x -2|\)[/tex].

Combining the results:
So overall we have [tex]\(| x-1|-2|-3\)[/tex] evaluating to:
- [tex]\((x - 6)\)[/tex] if [tex]\(x \geq 3\)[/tex]
- [tex]\(3 - x\)[/tex] if [tex]\(-1 \geq x\)[/tex]
- [tex]\( | x | \)[/tex] if [tex]\(-1 < x < 1 \)[/tex]
- [tex]\( | x-2 | \)[/tex] if [tex]\( 1 \le x < 3 \)[/tex]

### Step 3: Solve the inequality [tex]\((|| x-1|-2|-3)(|x-2|-3) \geq 0\)[/tex]

Now, combining this with second absolute:
we have cases analysis for: [tex]\(( inner result ) (inner result) \geq 0 \)[/tex]

The analysis is split by critical points [tex]\(\{-1, 1, 2,3, 6\}\)[/tex].

1. For [tex]\(x < -1\)[/tex]: both [tex]\( (3-x) | x-5 | \cdots \geq 0\)[/tex] under valid ranges

2. Between [tex]\(-1 < x < 1 \)[/tex]: simplifying for each

3. Analysis similarly for [tex]\( 1\leq x <2\)[/tex] , [tex]\(2\leq x <3\)[/tex] [tex]\( 3\leq x< \6 \)[/tex] and beyond.

Aggregate to derive expression holding non-negativity.

### Conclusion:

Analyzing all the ranges one consistent inequality solutions ensuring overall:
final combined valid [tex]\(x\)[/tex] would enable ensuring:
[tex]\( (-\infty, -1] \)[/tex],
Moreover merged outputs- you encounter greater analysis \split into.

### Detailed step combining should narrowing.

Verification across segments ensure viable inequality holding. Solution integration