Match each inequality to its solution.

Drag the tiles to the correct boxes. Not all tiles will be used.

Tiles:
- [tex]x \ \textgreater \ 3[/tex]
- [tex]x \ \textless \ 3[/tex]
- [tex]x \ \textgreater \ -2[/tex]
- [tex]x \ \textless \ -2[/tex]
- [tex]x \ \textless \ 2[/tex]
- [tex]x \ \textgreater \ 2[/tex]
- [tex]x \ \textless \ -3[/tex]
- [tex]x \ \textgreater \ -3[/tex]

Pairs:
- [tex]2(5)^z \ \textgreater \ 250 \longrightarrow[/tex]
- [tex]4\left(\frac{1}{3}\right)^2 \ \textless \ 36 \longrightarrow[/tex]
- [tex]10\left(\frac{1}{2}\right)^x \ \textgreater \ 80 \longrightarrow[/tex]
- [tex]\left(\frac{1}{2}\right)(6)^x \ \textless \ 18 \longrightarrow[/tex]



Answer :

Let's match each inequality to its corresponding solution:

For the inequality [tex]\(2(5)^z > 250\)[/tex]:
- The solution is [tex]\(z > 3\)[/tex].
- So, [tex]\(2(5)^z > 250 \longrightarrow x > 3\)[/tex].

For the inequality [tex]\(4\left(\frac{1}{3}\right)^2 < 36\)[/tex]:
- This inequality does not provide a specific solution for [tex]\(x\)[/tex].
- So, [tex]\(4\left(\frac{1}{3}\right)^2<36 \longrightarrow \text{No specific solution}\)[/tex].

For the inequality [tex]\(10\left(\frac{1}{2}\right)^x > 80\)[/tex]:
- The solution is [tex]\(x > 3\)[/tex].
- So, [tex]\(10\left(\frac{1}{2}\right)^x > 80 \longrightarrow x > 3\)[/tex].

For the inequality [tex]\(\left(\frac{1}{2}\right)(6)^x < 18\)[/tex]:
- The solution is [tex]\(x < 2\)[/tex].
- So, [tex]\(\left(\frac{1}{2}\right)(6)^x<18 \longrightarrow x < 2\)[/tex].

Considering the given pairs, we have:

[tex]\[ \begin{aligned} &2(5)^z > 250 \longrightarrow x > 3, \\ &4\left(\frac{1}{3}\right)^2<36 \longrightarrow \text{No specific solution}, \\ &10\left(\frac{1}{2}\right)^x > 80 \longrightarrow x > 3, \\ &\left(\frac{1}{2}\right)(6)^x<18 \longrightarrow x < 2. \end{aligned} \][/tex]

Thus, the correct matches are:
- [tex]\(2(5)^z > 250 \longrightarrow x > 3\)[/tex]
- [tex]\(4\left(\frac{1}{3}\right)^2<36 \longrightarrow \text{No specific solution}\)[/tex]
- [tex]\(10\left(\frac{1}{2}\right)^x > 80 \longrightarrow x > 3\)[/tex]
- [tex]\(\left(\frac{1}{2}\right)(6)^x<18 \longrightarrow x < 2\)[/tex]