Answer :

To find the inverse function of [tex]\(g(x) = \frac{\sqrt{x} + 2}{7 - \sqrt{x}}\)[/tex], follow these steps:

1. Express the function in terms of [tex]\(y\)[/tex]:

[tex]\(y = \frac{\sqrt{x} + 2}{7 - \sqrt{x}}\)[/tex]

2. Interchange [tex]\(x\)[/tex] and [tex]\(y\)[/tex]:

[tex]\(x = \frac{\sqrt{y} + 2}{7 - \sqrt{y}}\)[/tex]

3. Solve for [tex]\(y\)[/tex]:

- Start by manipulating the equation to clear the fraction. Multiply both sides by the denominator:

[tex]\(x(7 - \sqrt{y}) = \sqrt{y} + 2\)[/tex]

- Distribute [tex]\(x\)[/tex] on the left side:

[tex]\(7x - x\sqrt{y} = \sqrt{y} + 2\)[/tex]

- Isolate terms involving [tex]\(\sqrt{y}\)[/tex]:

[tex]\(7x - 2 = x\sqrt{y} + \sqrt{y}\)[/tex]

- Factor out [tex]\(\sqrt{y}\)[/tex] on the right side:

[tex]\(7x - 2 = \sqrt{y}(x + 1)\)[/tex]

- Divide both sides by [tex]\((x + 1)\)[/tex] to solve for [tex]\(\sqrt{y}\)[/tex]:

[tex]\(\sqrt{y} = \frac{7x - 2}{x + 1}\)[/tex]

- Square both sides to solve for [tex]\(y\)[/tex]:

[tex]\(y = \left(\frac{7x - 2}{x + 1}\right)^2\)[/tex]

Therefore, the inverse function of [tex]\(g(x)\)[/tex] is:

[tex]\[ g^{-1}(x) = \left(\frac{7x - 2}{x + 1}\right)^2 \][/tex]

This is the final expression for the inverse function.