Solve the multiple-angle equation. (Enter your answers as a comma-separated list. Use [tex]$n$[/tex] as an arbitrary integer.)

[tex]\[
\begin{array}{l}
\tan(4x) - 1 = 0 \\
x = \square
\end{array}
\][/tex]



Answer :

Certainly! Let's solve the equation [tex]\( \tan(4x) - 1 = 0 \)[/tex] step-by-step.

1. Set the given equation equal to zero:
[tex]\[ \tan(4x) - 1 = 0 \][/tex]

2. Isolate the tangent function:
[tex]\[ \tan(4x) = 1 \][/tex]

3. Recall the angles where the tangent function equals 1:
The tangent function equals 1 at [tex]\( \frac{\pi}{4} + n\pi \)[/tex], where [tex]\( n \)[/tex] is any integer (since the tangent function has a period of [tex]\( \pi \)[/tex]).

4. Set [tex]\( 4x \)[/tex] equal to the general solution for the angle:
[tex]\[ 4x = \frac{\pi}{4} + n\pi \][/tex]

5. Solve for [tex]\( x \)[/tex] by dividing both sides by 4:
[tex]\[ x = \frac{\frac{\pi}{4} + n\pi}{4} \][/tex]

6. Simplify the expression:
Break down the numerator and divide each term by 4:
[tex]\[ x = \frac{\pi}{4 \cdot 4} + \frac{n\pi}{4} \][/tex]
[tex]\[ x = \frac{\pi}{16} + \frac{n\pi}{4} \][/tex]

7. State the final solution:
[tex]\( x = \frac{\pi}{16} + n\pi/4, \quad \text{where} \; n \; \text{is an integer} \)[/tex]

Thus, the solutions to the equation [tex]\(\tan(4x) - 1 = 0\)[/tex] are:
[tex]\[ x = \frac{\pi}{16} + \frac{n\pi}{4}, \quad \text{where} \; n \; \text{is an integer} \][/tex]