Type the correct answer in each box. Use numerals instead of words.

Consider function [tex]h[/tex].

[tex]
h(x)=\left\{
\begin{array}{ll}
3x-4, & x\ \textless \ 0 \\
2x^2-3x+10, & 0 \leq x\ \textless \ 4 \\
2^x, & x \geq 4
\end{array}
\right.
[/tex]

What are the values of the function when [tex]x=0[/tex] and when [tex]x=4[/tex]?

[tex]
\begin{array}{l}
h(0)=\square \\
h(4)=\square
\end{array}
[/tex]



Answer :

Given the piecewise function [tex]\( h(x) \)[/tex]:

[tex]\[ h(x) = \begin{cases} 3x - 4, & \text{if } x < 0 \\ 2x^2 - 3x + 10, & \text{if } 0 \leq x < 4 \\ 2^x, & \text{if } x \geq 4 \end{cases} \][/tex]

We need to find the values of the function when [tex]\( x = 0 \)[/tex] and [tex]\( x = 4 \)[/tex].

1. For [tex]\( x = 0 \)[/tex]:
Since [tex]\( 0 \leq x < 4 \)[/tex], we use the second piece of the function:
[tex]\[ h(0) = 2(0)^2 - 3(0) + 10 = 0 - 0 + 10 = 10 \][/tex]

2. For [tex]\( x = 4 \)[/tex]:
Since [tex]\( x \geq 4 \)[/tex], we use the third piece of the function:
[tex]\[ h(4) = 2^4 = 16 \][/tex]

Therefore, the values of the function are:
[tex]\[ h(0) = 10 \][/tex]
[tex]\[ h(4) = 16 \][/tex]