11. A car is traveling at a speed of [tex]$50 \frac{2}{5} \text{ km/hr}$[/tex]. How much time will it take to travel a distance of [tex][tex]$200 \frac{1}{10}$[/tex] \text{ km}?[/tex]



Answer :

Certainly! Let's break down the problem step-by-step:

1. Understand the given values:
- The speed of the car is [tex]\( 50 \frac{2}{5} \)[/tex] km/hr.
- The distance to be traveled is [tex]\( 200 \frac{1}{10} \)[/tex] km.

2. Convert the mixed numbers into improper fractions or decimal form for easier calculation:
- Speed: [tex]\( 50 \frac{2}{5} \)[/tex] km/hr can be converted to its decimal form:
[tex]\[ 50 \frac{2}{5} = 50 + \frac{2}{5} = 50 + 0.4 = 50.4 \text{ km/hr} \][/tex]
- Distance: [tex]\( 200 \frac{1}{10} \)[/tex] km can similarly be converted:
[tex]\[ 200 \frac{1}{10} = 200 + \frac{1}{10} = 200 + 0.1 = 200.1 \text{ km} \][/tex]

3. Using the formula for time:
- The formula to calculate time is:
[tex]\[ \text{Time} = \frac{\text{Distance}}{\text{Speed}} \][/tex]
- Substituting the given values into the formula:
[tex]\[ \text{Time} = \frac{200.1 \text{ km}}{50.4 \text{ km/hr}} \][/tex]

4. Perform the division to find the time:
- Dividing 200.1 by 50.4, we get:
[tex]\[ \text{Time} \approx 3.9702380952380953 \text{ hours} \][/tex]

5. Conclusion:
- It will take approximately [tex]\( 3.97 \)[/tex] hours for the car to travel a distance of [tex]\( 200 \frac{1}{10} \)[/tex] km at a speed of [tex]\( 50 \frac{2}{5} \)[/tex] km/hr.

So, the time required for the car to travel the given distance is around [tex]\( 3.9702380952380953 \)[/tex] hours.