Answer :

Sure, let's solve the given expression step by step.

The given expression is:

[tex]\[ 200 + 8 \sqrt{200} - 2 \sqrt{363} \][/tex]

Step 1: Calculate [tex]\(8 \sqrt{200}\)[/tex]

First, we need to calculate [tex]\(\sqrt{200}\)[/tex]:

[tex]\[ \sqrt{200} \approx 14.1421 \][/tex]

Then we multiply by 8:

[tex]\[ 8 \times 14.1421 \approx 113.1371 \][/tex]

So,

[tex]\[ 8 \sqrt{200} \approx 113.1371 \][/tex]

Step 2: Calculate [tex]\(-2 \sqrt{363}\)[/tex]

Next, we need to calculate [tex]\(\sqrt{363}\)[/tex]:

[tex]\[ \sqrt{363} \approx 19.0526 \][/tex]

Then we multiply by -2:

[tex]\[ -2 \times 19.0526 \approx -38.1051 \][/tex]

So,

[tex]\[ -2 \sqrt{363} \approx -38.1051 \][/tex]

Step 3: Sum all the parts

Now, we combine all the calculated parts:

[tex]\[ 200 + 113.1371 - 38.1051 \][/tex]

First, add [tex]\(200\)[/tex] and [tex]\(113.1371\)[/tex]:

[tex]\[ 200 + 113.1371 \approx 313.1371 \][/tex]

Then, subtract [tex]\(38.1051\)[/tex] from [tex]\(313.1371\)[/tex]:

[tex]\[ 313.1371 - 38.1051 \approx 275.0320 \][/tex]

Therefore, the final result of the expression [tex]\(200 + 8 \sqrt{200} - 2 \sqrt{363}\)[/tex] is approximately [tex]\(275.0320\)[/tex].