Answer :

Let's solve [tex]\(200 + 8 \sqrt{200} - 2 \sqrt{363}\)[/tex] step by step.

1. Calculate [tex]\(\sqrt{200}\)[/tex] and [tex]\(\sqrt{363}\)[/tex]:

[tex]\[ \sqrt{200} \approx 14.1421 \][/tex]
[tex]\[ \sqrt{363} \approx 19.0526 \][/tex]

2. Multiply these square roots by the appropriate coefficients:

[tex]\[ 8 \sqrt{200} = 8 \times 14.1421 \approx 113.1371 \][/tex]
[tex]\[ 2 \sqrt{363} = 2 \times 19.0526 \approx 38.1051 \][/tex]

3. Substitute these values back into the original expression:

[tex]\[ 200 + 8 \sqrt{200} - 2 \sqrt{363} \approx 200 + 113.1371 - 38.1051 \][/tex]

4. Perform the final addition and subtraction:

[tex]\[ 200 + 113.1371 - 38.1051 \approx 275.0320 \][/tex]

Thus, the final value of [tex]\(200 + 8 \sqrt{200} - 2 \sqrt{363}\)[/tex] is approximately [tex]\(275.0320\)[/tex].