Answer :
To solve the problem, follow these steps:
1. Identify the Given Values:
- [tex]\(P = 3\)[/tex]
- [tex]\(R = 4\)[/tex]
- [tex]\(q = 2\)[/tex]
2. Define [tex]\(S\)[/tex] Using the Given Expression:
- [tex]\(S = \frac{1}{4} \times R\)[/tex]
- Since [tex]\(R = 4\)[/tex], we can substitute [tex]\(R\)[/tex] into the expression for [tex]\(S\)[/tex]:
[tex]\[ S = \frac{1}{4} \times 4 \][/tex]
- Simplify the calculation:
[tex]\[ S = 1 \][/tex]
3. Calculate the Value of the Expression [tex]\(8(S + P \times R)\)[/tex]:
- First, determine [tex]\(P \times R\)[/tex]:
[tex]\[ P \times R = 3 \times 4 = 12 \][/tex]
- Next, add [tex]\(S\)[/tex] to this product:
[tex]\[ S + P \times R = 1 + 12 = 13 \][/tex]
- Finally, multiply this sum by 8:
[tex]\[ 8 \times 13 = 104 \][/tex]
So, the value of the expression [tex]\(8(S + P \times R)\)[/tex] is [tex]\(104\)[/tex].
1. Identify the Given Values:
- [tex]\(P = 3\)[/tex]
- [tex]\(R = 4\)[/tex]
- [tex]\(q = 2\)[/tex]
2. Define [tex]\(S\)[/tex] Using the Given Expression:
- [tex]\(S = \frac{1}{4} \times R\)[/tex]
- Since [tex]\(R = 4\)[/tex], we can substitute [tex]\(R\)[/tex] into the expression for [tex]\(S\)[/tex]:
[tex]\[ S = \frac{1}{4} \times 4 \][/tex]
- Simplify the calculation:
[tex]\[ S = 1 \][/tex]
3. Calculate the Value of the Expression [tex]\(8(S + P \times R)\)[/tex]:
- First, determine [tex]\(P \times R\)[/tex]:
[tex]\[ P \times R = 3 \times 4 = 12 \][/tex]
- Next, add [tex]\(S\)[/tex] to this product:
[tex]\[ S + P \times R = 1 + 12 = 13 \][/tex]
- Finally, multiply this sum by 8:
[tex]\[ 8 \times 13 = 104 \][/tex]
So, the value of the expression [tex]\(8(S + P \times R)\)[/tex] is [tex]\(104\)[/tex].