If [tex]\( x = \frac{3x^2 - x}{5} \)[/tex], solve for [tex]\( x \)[/tex] in the equation [tex]\( 2x + 15 = \sqrt{a} \)[/tex].

(Note: The original question was largely nonsensical and lacked coherence. I have rewritten it to make sense as an algebraic problem. If this interpretation is incorrect, please provide more context.)



Answer :

Sure, let's solve the given equation step-by-step.

The original equation given is:

[tex]\[ x = \frac{3x^2 - x}{5} \][/tex]

which needs to be unified with:

[tex]\[ 2x + 15 \][/tex]

### Step 1: Equate the two expressions
Set the two sides equal to each other:

[tex]\[ \frac{3x^2 - x}{5} = 2x + 15 \][/tex]

### Step 2: Clear the fraction
To eliminate the fraction, multiply every term by 5:

[tex]\[ 3x^2 - x = 5(2x + 15) \][/tex]

### Step 3: Distribute on the right side
Expand the expression on the right side:

[tex]\[ 3x^2 - x = 10x + 75 \][/tex]

### Step 4: Move all terms to one side
This will help us form a standard quadratic equation. Subtract [tex]\(10x + 75\)[/tex] from both sides:

[tex]\[ 3x^2 - x - 10x - 75 = 0 \][/tex]

Combine like terms:

[tex]\[ 3x^2 - 11x - 75 = 0 \][/tex]

### Step 5: Solve the quadratic equation
This quadratic equation can be solved using the quadratic formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In our case, [tex]\(a = 3\)[/tex], [tex]\(b = -11\)[/tex], and [tex]\(c = -75\)[/tex].

### Step 6: Calculate the discriminant
First, compute the discriminant:

[tex]\[ b^2 - 4ac = (-11)^2 - 4 \cdot 3 \cdot (-75) \][/tex]
[tex]\[ b^2 - 4ac = 121 + 900 \][/tex]
[tex]\[ b^2 - 4ac = 1021 \][/tex]

### Step 7: Compute the square root of the discriminant
Find the square root of 1021:

[tex]\[ \sqrt{1021} \approx 31.9539 \][/tex]

### Step 8: Apply the quadratic formula
Substitute into the quadratic formula:

[tex]\[ x = \frac{-(-11) \pm 31.9539}{2 \cdot 3} \][/tex]
[tex]\[ x = \frac{11 \pm 31.9539}{6} \][/tex]

This gives us two solutions:

[tex]\[ x_1 = \frac{11 + 31.9539}{6} \approx \frac{42.9539}{6} \approx 7.1588 \][/tex]
[tex]\[ x_2 = \frac{11 - 31.9539}{6} \approx \frac{-20.9539}{6} \approx -3.4922 \][/tex]

### Conclusion:
The solutions to the given equation are:
[tex]\[ x_1 \approx 7.1588 \][/tex]
[tex]\[ x_2 \approx -3.4922 \][/tex]