Answer :

Sure! Let's find the simplified form of the function [tex]\( f(x) = (2e^x) \cdot (3x^2) \)[/tex].

To determine the simplified expression, we'll follow the steps below:

1. Identify the given expression:
[tex]\[ f(x) = (2e^x) \cdot (3x^2) \][/tex]

2. Combine the constants:
Notice that the constants 2 and 3 can be multiplied together:
[tex]\[ 2 \cdot 3 = 6 \][/tex]

3. Rewrite the expression with the combined constants:
Substitute [tex]\(6\)[/tex] for the constants combination:
[tex]\[ f(x) = 6 \cdot e^x \cdot x^2 \][/tex]

4. Write the simplified expression clearly:
[tex]\[ f(x) = 6x^2e^x \][/tex]

So, the simplified form of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ f(x) = 6x^2e^x \][/tex]

That's the final answer.