6. [tex]\( l(BD) + l(CG) - l(FP) = \)[/tex] how many units?

(1) [tex]\(\frac{9}{8}\)[/tex]

(2) [tex]\(\frac{3}{8}\)[/tex]

(3) [tex]\(\frac{3}{6}\)[/tex]

(4) [tex]\(\frac{3}{4}\)[/tex]



Answer :

To find the value of [tex]\( l(BD) + l(CG) - l(FP) \)[/tex], we will use the given lengths:

- Length of [tex]\( BD \)[/tex] is [tex]\( \frac{9}{8} \)[/tex] units.
- Length of [tex]\( CG \)[/tex] is [tex]\( \frac{3}{8} \)[/tex] units.
- Length of [tex]\( FP \)[/tex] is [tex]\( \frac{3}{6} \)[/tex] units.

First, simplify the length of [tex]\( FP \)[/tex]:

[tex]\[ \frac{3}{6} = \frac{1}{2} \][/tex]

Next, we calculate the sum of the lengths of [tex]\( BD \)[/tex] and [tex]\( CG \)[/tex]:

[tex]\[ l(BD) + l(CG) = \frac{9}{8} + \frac{3}{8} \][/tex]

Since the denominators are the same, simply add the numerators:

[tex]\[ \frac{9}{8} + \frac{3}{8} = \frac{12}{8} = \frac{3}{2} \][/tex]

Now, subtract the length of [tex]\( FP \)[/tex]:

[tex]\[ \frac{3}{2} - \frac{1}{2} \][/tex]

Again, since the denominators are the same, subtract the numerators:

[tex]\[ \frac{3}{2} - \frac{1}{2} = \frac{2}{2} = 1 \][/tex]

Thus, the value of [tex]\( l(BD) + l(CG) - l(FP) \)[/tex] is [tex]\( 1.0 \)[/tex] units.

So the correct answer is:

[tex]\[ \boxed{1} \][/tex]