Answer :

Let's solve this system of linear equations step by step:

1. Write down the given system of equations:
[tex]\[ \begin{cases} 2x + y = 18 \\ y = 2x - 10 \end{cases} \][/tex]

2. Use the second equation to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = 2x - 10 \][/tex]

3. Substitute [tex]\( y = 2x - 10 \)[/tex] into the first equation [tex]\( 2x + y = 18 \)[/tex]:
[tex]\[ 2x + (2x - 10) = 18 \][/tex]

4. Simplify the equation:
[tex]\[ 2x + 2x - 10 = 18 \][/tex]
Combine like terms:
[tex]\[ 4x - 10 = 18 \][/tex]

5. Solve for [tex]\( x \)[/tex]:
[tex]\[ 4x - 10 = 18 \][/tex]
Add 10 to both sides:
[tex]\[ 4x = 28 \][/tex]
Divide by 4:
[tex]\[ x = 7 \][/tex]

6. Now that we have [tex]\( x \)[/tex], we substitute [tex]\( x = 7 \)[/tex] back into the second equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 2x - 10 \][/tex]
Substitute [tex]\( x = 7 \)[/tex]:
[tex]\[ y = 2(7) - 10 \][/tex]
Simplify:
[tex]\[ y = 14 - 10 = 4 \][/tex]

7. So, the solution to the system of equations is:
[tex]\[ x = 7, \quad y = 4 \][/tex]

Therefore, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are [tex]\( x = 7 \)[/tex] and [tex]\( y = 4 \)[/tex].