Which equation can be represented using the number line?

A. [tex]\frac{3}{4}+\frac{1}{8}=6[/tex]
B. [tex]\frac{1}{8}-\frac{3}{4}=6[/tex]
C. [tex]6+\frac{3}{4}=\frac{1}{8}[/tex]
D. [tex]6-\frac{1}{8}=\frac{3}{4}[/tex]

Mark this and return
Next
Submit



Answer :

Let's analyze each of the given equations to see if they hold true:

1. Equation: [tex]\(\frac{3}{4} + \frac{1}{8} = 6\)[/tex]
- The left-hand side is [tex]\(\frac{3}{4} + \frac{1}{8}\)[/tex].
- To add these fractions, we need a common denominator. The least common denominator of 4 and 8 is 8.
- Converting [tex]\(\frac{3}{4}\)[/tex] to a fraction with a denominator of 8: [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex].
- So, [tex]\(\frac{3}{4} + \frac{1}{8} = \frac{6}{8} + \frac{1}{8} = \frac{7}{8}\)[/tex].
- Comparing [tex]\(\frac{7}{8}\)[/tex] with 6, clearly [tex]\(\frac{7}{8} \neq 6\)[/tex].

2. Equation: [tex]\(\frac{1}{8} - \frac{3}{4} = 6\)[/tex]
- The left-hand side is [tex]\(\frac{1}{8} - \frac{3}{4}\)[/tex].
- Again, we need a common denominator. The least common denominator of 8 and 4 is 8.
- Converting [tex]\(\frac{3}{4}\)[/tex] to a fraction with a denominator of 8: [tex]\(\frac{3}{4} = \frac{6}{8}\)[/tex].
- So, [tex]\(\frac{1}{8} - \frac{3}{4} = \frac{1}{8} - \frac{6}{8} = \frac{1}{8} - \frac{6}{8} = -\frac{5}{8}\)[/tex].
- Comparing [tex]\(-\frac{5}{8}\)[/tex] with 6, clearly [tex]\(-\frac{5}{8} \neq 6\)[/tex].

3. Equation: [tex]\(6 + \frac{3}{4} = \frac{1}{8}\)[/tex]
- The left-hand side is [tex]\(6 + \frac{3}{4}\)[/tex].
- Converting 6 to a fraction with a denominator of 4 for easier addition: [tex]\(6 = \frac{24}{4}\)[/tex].
- So, [tex]\(6 + \frac{3}{4} = \frac{24}{4} + \frac{3}{4} = \frac{27}{4}\)[/tex].
- Comparing [tex]\(\frac{27}{4}\)[/tex] with [tex]\(\frac{1}{8}\)[/tex], clearly [tex]\(\frac{27}{4} \neq \frac{1}{8}\)[/tex].

4. Equation: [tex]\(6 - \frac{1}{8} = \frac{3}{4}\)[/tex]
- The left-hand side is [tex]\(6 - \frac{1}{8}\)[/tex].
- Converting 6 to a fraction with a denominator of 8 for easier subtraction: [tex]\(6 = \frac{48}{8}\)[/tex].
- So, [tex]\(6 - \frac{1}{8} = \frac{48}{8} - \frac{1}{8} = \frac{47}{8}\)[/tex].
- Comparing [tex]\(\frac{47}{8}\)[/tex] with [tex]\(\frac{3}{4}\)[/tex], clearly [tex]\(\frac{47}{8} \neq \frac{3}{4}\)[/tex].

None of these equations hold true based on our analysis. Therefore, the correct response is that none of the given equations can be represented accurately on the number line.

The result is [tex]\(\boxed{-1}\)[/tex].