Answer :
To determine the value of [tex]\( f(6) \)[/tex] for the function [tex]\( f(x) = 2x^2 + 5\sqrt{x - 2} \)[/tex], follow these steps:
1. Substitute [tex]\( x = 6 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(6) = 2(6)^2 + 5\sqrt{6 - 2} \][/tex]
2. Calculate [tex]\( (6)^2 \)[/tex]:
[tex]\[ 6^2 = 36 \][/tex]
3. Multiply this result by 2:
[tex]\[ 2 \cdot 36 = 72 \][/tex]
4. Calculate [tex]\( \sqrt{6 - 2} \)[/tex]:
[tex]\[ 6 - 2 = 4 \][/tex]
[tex]\[ \sqrt{4} = 2 \][/tex]
5. Multiply this result by 5:
[tex]\[ 5 \cdot 2 = 10 \][/tex]
6. Finally, add the two results from steps 3 and 5:
[tex]\[ 72 + 10 = 82 \][/tex]
Therefore, the value of [tex]\( f(6) \)[/tex] is [tex]\( \boxed{82} \)[/tex].
1. Substitute [tex]\( x = 6 \)[/tex] into the function [tex]\( f(x) \)[/tex]:
[tex]\[ f(6) = 2(6)^2 + 5\sqrt{6 - 2} \][/tex]
2. Calculate [tex]\( (6)^2 \)[/tex]:
[tex]\[ 6^2 = 36 \][/tex]
3. Multiply this result by 2:
[tex]\[ 2 \cdot 36 = 72 \][/tex]
4. Calculate [tex]\( \sqrt{6 - 2} \)[/tex]:
[tex]\[ 6 - 2 = 4 \][/tex]
[tex]\[ \sqrt{4} = 2 \][/tex]
5. Multiply this result by 5:
[tex]\[ 5 \cdot 2 = 10 \][/tex]
6. Finally, add the two results from steps 3 and 5:
[tex]\[ 72 + 10 = 82 \][/tex]
Therefore, the value of [tex]\( f(6) \)[/tex] is [tex]\( \boxed{82} \)[/tex].