Given the piecewise function shown below, select all of the statements that are true.

[tex]\[
f(x)=\begin{cases}
-3x & \text{if } x \ \textless \ 0 \\
4 & \text{if } x = 0 \\
x^2 & \text{if } x \ \textgreater \ 0
\end{cases}
\][/tex]

A. [tex]\( f(1) = -3 \)[/tex]

B. [tex]\( f(3) = 9 \)[/tex]

C. [tex]\( f(2) = 4 \)[/tex]

D. [tex]\( f(4) = 0 \)[/tex]



Answer :

Sure, let's analyze the given piecewise function [tex]\( f(x) \)[/tex] and evaluate it for the specific points to check the given statements.

The piecewise function is:
[tex]\[ f(x) = \left\{ \begin{array}{ll} -3x, & \text{if } x < 0 \\ 4, & \text{if } x = 0 \\ x^2, & \text{if } x > 0 \end{array} \right. \][/tex]

Let's evaluate the function at the given points and check the corresponding statements:

1. Evaluate [tex]\( f(1) \)[/tex]:
Since [tex]\( 1 > 0 \)[/tex], we use the piece [tex]\( x^2 \)[/tex]:
[tex]\[ f(1) = 1^2 = 1 \][/tex]
The statement [tex]\( f(1) = -3 \)[/tex] is:
[tex]\[ \text{False} \][/tex]

2. Evaluate [tex]\( f(3) \)[/tex]:
Since [tex]\( 3 > 0 \)[/tex], we use the piece [tex]\( x^2 \)[/tex]:
[tex]\[ f(3) = 3^2 = 9 \][/tex]
The statement [tex]\( f(3) = 9 \)[/tex] is:
[tex]\[ \text{True} \][/tex]

3. Evaluate [tex]\( f(2) \)[/tex]:
Since [tex]\( 2 > 0 \)[/tex], we use the piece [tex]\( x^2 \)[/tex]:
[tex]\[ f(2) = 2^2 = 4 \][/tex]
The statement [tex]\( f(2) = 4 \)[/tex] is:
[tex]\[ \text{True} \][/tex]

4. Evaluate [tex]\( f(4) \)[/tex]:
Since [tex]\( 4 > 0 \)[/tex], we use the piece [tex]\( x^2 \)[/tex]:
[tex]\[ f(4) = 4^2 = 16 \][/tex]
The statement [tex]\( f(4) = 0 \)[/tex] is:
[tex]\[ \text{False} \][/tex]

Based on these evaluations, the true statements are:
- [tex]\( f(3) = 9 \)[/tex]
- [tex]\( f(2) = 4 \)[/tex]

The false statements are:
- [tex]\( f(1) = -3 \)[/tex]
- [tex]\( f(4) = 0 \)[/tex]