Answer :
To solve for the rational number where the numerator is [tex]\( 4 \times 3 \)[/tex] and the denominator is [tex]\( 2 \times (-5) \)[/tex], follow these steps:
1. Calculate the numerator:
[tex]\[ 4 \times 3 = 12 \][/tex]
So, the numerator is [tex]\( 12 \)[/tex].
2. Calculate the denominator:
[tex]\[ 2 \times (-5) = -10 \][/tex]
So, the denominator is [tex]\( -10 \)[/tex].
3. Form the rational number:
A rational number can be expressed as [tex]\(\frac{\text{numerator}}{\text{denominator}}\)[/tex]:
[tex]\[ \frac{12}{-10} \][/tex]
4. Simplify the rational number:
[tex]\[ \frac{12}{-10} = -\frac{12}{10} = -1.2 \][/tex]
Therefore, the rational number is [tex]\(-1.2\)[/tex].
1. Calculate the numerator:
[tex]\[ 4 \times 3 = 12 \][/tex]
So, the numerator is [tex]\( 12 \)[/tex].
2. Calculate the denominator:
[tex]\[ 2 \times (-5) = -10 \][/tex]
So, the denominator is [tex]\( -10 \)[/tex].
3. Form the rational number:
A rational number can be expressed as [tex]\(\frac{\text{numerator}}{\text{denominator}}\)[/tex]:
[tex]\[ \frac{12}{-10} \][/tex]
4. Simplify the rational number:
[tex]\[ \frac{12}{-10} = -\frac{12}{10} = -1.2 \][/tex]
Therefore, the rational number is [tex]\(-1.2\)[/tex].