Let [tex]A = 6i[/tex] and [tex]B = 5 + 7i[/tex]. What is the value of [tex]A \times B[/tex]?

A. [tex]-42 + 30i[/tex]
B. [tex]42 + 30i[/tex]
C. [tex]-42 - 30i[/tex]
D. [tex]42 - 30i[/tex]



Answer :

To find the value of the product [tex]\(A \cdot B\)[/tex] where [tex]\(A = 6i\)[/tex] and [tex]\(B = 5 + 7i\)[/tex], we will use the distributive property of multiplication over addition for complex numbers. Here is the step-by-step process:

1. Write down the values of [tex]\(A\)[/tex] and [tex]\(B\)[/tex]:
[tex]\[ A = 6i \][/tex]
[tex]\[ B = 5 + 7i \][/tex]

2. Apply the distributive property [tex]\((6i) \cdot (5 + 7i)\)[/tex]:
[tex]\[ (6i) \cdot (5 + 7i) = 6i \cdot 5 + 6i \cdot 7i \][/tex]

3. Calculate each term separately:
[tex]\[ 6i \cdot 5 = 30i \][/tex]
[tex]\[ 6i \cdot 7i = 42i^2 \][/tex]

4. Recall that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ 42i^2 = 42 \cdot (-1) = -42 \][/tex]

5. Combine the results:
[tex]\[ 30i + (-42) = -42 + 30i \][/tex]

Hence, the value of [tex]\(A \cdot B\)[/tex] is:
[tex]\[ \boxed{-42 + 30i} \][/tex]