Answer :
Certainly! Let's determine the area of the triangle step by step.
1. Identify the given values:
- Base ([tex]\( b \)[/tex]) of the triangle: [tex]\( 10 \)[/tex] cm
- Height ([tex]\( h \)[/tex]) of the triangle: [tex]\( 5 \)[/tex] cm
2. Use the formula for the area of a triangle:
[tex]\[ A = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ A = \frac{1}{2} \times 10 \, \text{cm} \times 5 \, \text{cm} \][/tex]
4. Calculate the product of the base and the height:
[tex]\[ 10 \, \text{cm} \times 5 \, \text{cm} = 50 \, \text{cm}^2 \][/tex]
5. Divide the product by 2 to find the area:
[tex]\[ A = \frac{50 \, \text{cm}^2}{2} = 25 \, \text{cm}^2 \][/tex]
Therefore, the area of the triangle is [tex]\( 25 \, \text{cm}^2 \)[/tex].
1. Identify the given values:
- Base ([tex]\( b \)[/tex]) of the triangle: [tex]\( 10 \)[/tex] cm
- Height ([tex]\( h \)[/tex]) of the triangle: [tex]\( 5 \)[/tex] cm
2. Use the formula for the area of a triangle:
[tex]\[ A = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
3. Substitute the given values into the formula:
[tex]\[ A = \frac{1}{2} \times 10 \, \text{cm} \times 5 \, \text{cm} \][/tex]
4. Calculate the product of the base and the height:
[tex]\[ 10 \, \text{cm} \times 5 \, \text{cm} = 50 \, \text{cm}^2 \][/tex]
5. Divide the product by 2 to find the area:
[tex]\[ A = \frac{50 \, \text{cm}^2}{2} = 25 \, \text{cm}^2 \][/tex]
Therefore, the area of the triangle is [tex]\( 25 \, \text{cm}^2 \)[/tex].