Type the correct answer in the box. Express the answer to four significant figures.

Given:

[tex]\[
C + O_2 \rightarrow CO_2
\][/tex]

[tex]\[
\begin{array}{|l|c|}
\hline
\text{Bond} & \text{Bond Energy} \, ( \text{kJ/mol} ) \\
\hline
C = O & 799 \\
\hline
O = O & 494 \\
\hline
\end{array}
\][/tex]

Calculate the enthalpy change for the chemical reaction.

The change in enthalpy for the given reaction is [tex]$\square$[/tex] kilojoules.



Answer :

To determine the enthalpy change ([tex]\( \Delta H \)[/tex]) for the given reaction:

[tex]\[ C + O_2 \rightarrow CO_2 \][/tex]

we need to consider the bond energies provided.

- Bond energy for [tex]\( C = O \)[/tex] is [tex]\( 799 \, kJ/mol \)[/tex].
- Bond energy for [tex]\( O = O \)[/tex] is [tex]\( 494 \, kJ/mol \)[/tex].

The change in enthalpy for a reaction can be calculated using the bond energies of the bonds broken and formed. The formula used is:

[tex]\[ \Delta H = \Sigma (\text{Bond energies of bonds broken}) - \Sigma (\text{Bond energies of bonds formed}) \][/tex]

1. Identify the bonds broken:

In the reactants, we have one [tex]\( O_2 \)[/tex] molecule, which forms an [tex]\( O = O \)[/tex] double bond.

So, it involves breaking one [tex]\( O = O \)[/tex] bond.

- Bond energy of [tex]\( O = O \)[/tex]: [tex]\( 494 \, kJ/mol \)[/tex]

2. Identify the bonds formed:

In the products, we have one [tex]\( CO_2 \)[/tex] molecule, which has two [tex]\( C = O \)[/tex] double bonds.

So, for forming one [tex]\( CO_2 \)[/tex], it involves forming two [tex]\( C = O \)[/tex] bonds.

- Bond energy of [tex]\( C = O \)[/tex]: [tex]\( 799 \, kJ/mol \)[/tex]

3. Calculate the total bond energies:

- Bonds broken: [tex]\( 1 \times 494 = 494 \, kJ \)[/tex]
- Bonds formed: [tex]\( 2 \times 799 = 1598 \, kJ \)[/tex]

4. Calculate the enthalpy change ([tex]\( \Delta H \)[/tex]):

Substituting these values into our formula:

[tex]\[ \Delta H = 494 \, kJ - 1598 \, kJ \][/tex]

This results in:

[tex]\[ \Delta H = -1104 \, kJ \][/tex]

Therefore, the enthalpy change for the reaction is [tex]\(-1104 \, kJ\)[/tex].