Combine like terms to simplify fully.

[tex] 4 - 5x^2 - 3y^3 + 1 - y^3 + 7y^3 - 5 [/tex]

Result: [tex] \square [/tex]

Answer Attempt 1 out of 2

You must answer all questions above in order to submit.



Answer :

Sure, let's simplify the given expression step by step by combining like terms.

The given expression is:
[tex]\[ 4 - 5x^2 - 3y^3 + 1 - y^3 + 7y^3 - 5 \][/tex]

1. Combine the constant terms:
[tex]\[ 4 + 1 - 5 \][/tex]

Calculate the sum:
[tex]\[ 4 + 1 = 5 \][/tex]
[tex]\[ 5 - 5 = 0 \][/tex]

2. Combine the [tex]\( y^3 \)[/tex] terms:
[tex]\[ -3y^3 - y^3 + 7y^3 \][/tex]

Calculate the sum by adding the coefficients of [tex]\( y^3 \)[/tex]:
[tex]\[ -3 - 1 + 7 \][/tex]
[tex]\[ -3 - 1 = -4 \][/tex]
[tex]\[ -4 + 7 = 3 \][/tex]
So, the combined [tex]\( y^3 \)[/tex] terms become:
[tex]\[ 3y^3 \][/tex]

3. The term [tex]\( -5x^2 \)[/tex] remains as it is, since there are no other [tex]\( x^2 \)[/tex] terms to combine with it.

Putting it all together, we get the simplified expression:
[tex]\[ 0 - 5x^2 + 3y^3 \][/tex]

Therefore, the simplified form of the expression is:
[tex]\[ 0 - 5x^2 + 3y^3 \][/tex]