Sure, let's simplify the given expression step by step by combining like terms.
The given expression is:
[tex]\[ 4 - 5x^2 - 3y^3 + 1 - y^3 + 7y^3 - 5 \][/tex]
1. Combine the constant terms:
[tex]\[
4 + 1 - 5
\][/tex]
Calculate the sum:
[tex]\[
4 + 1 = 5
\][/tex]
[tex]\[
5 - 5 = 0
\][/tex]
2. Combine the [tex]\( y^3 \)[/tex] terms:
[tex]\[
-3y^3 - y^3 + 7y^3
\][/tex]
Calculate the sum by adding the coefficients of [tex]\( y^3 \)[/tex]:
[tex]\[
-3 - 1 + 7
\][/tex]
[tex]\[
-3 - 1 = -4
\][/tex]
[tex]\[
-4 + 7 = 3
\][/tex]
So, the combined [tex]\( y^3 \)[/tex] terms become:
[tex]\[
3y^3
\][/tex]
3. The term [tex]\( -5x^2 \)[/tex] remains as it is, since there are no other [tex]\( x^2 \)[/tex] terms to combine with it.
Putting it all together, we get the simplified expression:
[tex]\[
0 - 5x^2 + 3y^3
\][/tex]
Therefore, the simplified form of the expression is:
[tex]\[
0 - 5x^2 + 3y^3
\][/tex]