Answer :
Sure, let's address the given question in detail:
### Question 8
a. Copy and complete the table for [tex]\( y = 3x^2 - 5x + 4 \)[/tex] for [tex]\(-3 \leq x \leq 4\)[/tex].
Given:
[tex]\[ y = 3x^2 - 5x + 4 \][/tex]
We will fill in the respective values for each term in the table.
Let's complete each cell in sequence:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ 3(-3)^2 = 3 \cdot 9 = 27 \][/tex]
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ 3(-2)^2 = 3 \cdot 4 = 12 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ 3(-1)^2 = 3 \cdot 1 = 3 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ 3(0)^2 = 3 \cdot 0 = 0 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ 3(1)^2 = 3 \cdot 1 = 3 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ 3(2)^2 = 3 \cdot 4 = 12 \][/tex]
- For [tex]\( x = 3 \)[/tex]:
[tex]\[ 3(3)^2 = 3 \cdot 9 = 27 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ 3(4)^2 = 3 \cdot 16 = 48 \][/tex]
Now, let's complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline 3x^2 & 27 & 12 & 3 & 0 & 3 & 12 & 27 & 48 \\ \hline \end{array} \][/tex]
Therefore, the completed table for [tex]\( 3x^2 \)[/tex] is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline 3x^2 & 27 & 12 & 3 & 0 & 3 & 12 & 27 & 48 \\ \hline \end{array} \][/tex]
If you have any further questions or need assistance with another part of the original problem, feel free to ask!
### Question 8
a. Copy and complete the table for [tex]\( y = 3x^2 - 5x + 4 \)[/tex] for [tex]\(-3 \leq x \leq 4\)[/tex].
Given:
[tex]\[ y = 3x^2 - 5x + 4 \][/tex]
We will fill in the respective values for each term in the table.
Let's complete each cell in sequence:
- For [tex]\( x = -3 \)[/tex]:
[tex]\[ 3(-3)^2 = 3 \cdot 9 = 27 \][/tex]
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ 3(-2)^2 = 3 \cdot 4 = 12 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ 3(-1)^2 = 3 \cdot 1 = 3 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ 3(0)^2 = 3 \cdot 0 = 0 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ 3(1)^2 = 3 \cdot 1 = 3 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ 3(2)^2 = 3 \cdot 4 = 12 \][/tex]
- For [tex]\( x = 3 \)[/tex]:
[tex]\[ 3(3)^2 = 3 \cdot 9 = 27 \][/tex]
- For [tex]\( x = 4 \)[/tex]:
[tex]\[ 3(4)^2 = 3 \cdot 16 = 48 \][/tex]
Now, let's complete the table:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline 3x^2 & 27 & 12 & 3 & 0 & 3 & 12 & 27 & 48 \\ \hline \end{array} \][/tex]
Therefore, the completed table for [tex]\( 3x^2 \)[/tex] is:
[tex]\[ \begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 \\ \hline 3x^2 & 27 & 12 & 3 & 0 & 3 & 12 & 27 & 48 \\ \hline \end{array} \][/tex]
If you have any further questions or need assistance with another part of the original problem, feel free to ask!