Find the coordinates of [tex]$Z$[/tex] if [tex]$Y$[/tex] is the midpoint of [tex][tex]$XZ$[/tex][/tex], [tex]$X(-10,9)$[/tex], and [tex]$Y(-4,8)$[/tex].



Answer :

To find the coordinates of [tex]\(Z\)[/tex] given that [tex]\(Y\)[/tex] is the midpoint of [tex]\(X\)[/tex] and [tex]\(Z\)[/tex] with [tex]\(X(-10, 9)\)[/tex] and [tex]\(Y(-4, 8)\)[/tex], we can use the midpoint formula.

The midpoint formula states that the coordinates of the midpoint [tex]\(M\)[/tex] of a line segment connecting two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] are:
[tex]\[ M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \][/tex]

In this problem, [tex]\(Y\)[/tex] is the midpoint, so:
[tex]\[ Y = \left(\frac{X_1 + Z_1}{2}, \frac{X_2 + Z_2}{2}\right) \][/tex]

Given:
[tex]\[ X = (-10, 9) \][/tex]
[tex]\[ Y = (-4, 8) \][/tex]

Let [tex]\(Z\)[/tex] be [tex]\((Z_1, Z_2)\)[/tex].

Using the x-coordinates:
[tex]\[ -4 = \frac{-10 + Z_1}{2} \][/tex]

To find [tex]\(Z_1\)[/tex], solve the equation:
[tex]\[ -4 = \frac{-10 + Z_1}{2} \][/tex]
[tex]\[ -4 \times 2 = -10 + Z_1 \][/tex]
[tex]\[ -8 = -10 + Z_1 \][/tex]
[tex]\[ Z_1 = -8 + 10 \][/tex]
[tex]\[ Z_1 = 2 \][/tex]

Using the y-coordinates:
[tex]\[ 8 = \frac{9 + Z_2}{2} \][/tex]

To find [tex]\(Z_2\)[/tex], solve the equation:
[tex]\[ 8 = \frac{9 + Z_2}{2} \][/tex]
[tex]\[ 8 \times 2 = 9 + Z_2 \][/tex]
[tex]\[ 16 = 9 + Z_2 \][/tex]
[tex]\[ Z_2 = 16 - 9 \][/tex]
[tex]\[ Z_2 = 7 \][/tex]

Therefore, the coordinates of [tex]\(Z\)[/tex] are:
[tex]\[ Z = (2, 7) \][/tex]