Solve for [tex]$S$[/tex].

[tex]
V=\frac{E-7}{K(U+S)}
[/tex]

Use commas to separate multiple solutions.
One or more solutions: [tex][tex]$S=$[/tex] \square [/tex]
No real solution



Answer :

To solve for [tex]\( S \)[/tex] in the equation

[tex]\[ V = \frac{E - 7}{K(U + S)} \][/tex]

we will start by isolating [tex]\( S \)[/tex]. Here is the step-by-step process:

1. Multiply both sides by [tex]\( K(U + S) \)[/tex] to eliminate the denominator:

[tex]\[ V \cdot K(U + S) = E - 7 \][/tex]

2. Distribute [tex]\( VK \)[/tex] on the left side:

[tex]\[ VKU + VKS = E - 7 \][/tex]

3. Isolate the term containing [tex]\( S \)[/tex] (subtract [tex]\( VKU \)[/tex] from both sides):

[tex]\[ VKS = E - 7 - VKU \][/tex]

4. Solve for [tex]\( S \)[/tex] by dividing both sides by [tex]\( VK \)[/tex]:

[tex]\[ S = \frac{E - 7 - VKU}{VK} \][/tex]

5. Simplify the right side:

[tex]\[ S = \frac{E - 7}{VK} - \frac{VKU}{VK} \][/tex]

6. Further simplify:

Since [tex]\(\frac{VKU}{VK} = U\)[/tex],

[tex]\[ S = \frac{E - 7}{VK} - U \][/tex]

7. Combine the terms into one fraction:

[tex]\[ S = \frac{E - 7 - VKU}{VK} \][/tex]

So, the solution for [tex]\( S \)[/tex] is:

[tex]\[ S = \frac{E - 7 - VKU}{VK} \][/tex]

Or equivalently:

[tex]\[ S = \frac{E - KUV - 7}{KV} \][/tex]

Therefore, the solutions for [tex]\( S \)[/tex] is:

[tex]\[ S = \frac{E - KUV - 7}{KV} \][/tex]