Answer :

Let's solve the given expression step by step:

### Step 1: Solve [tex]\(4^2\)[/tex] and [tex]\(3^2\)[/tex]
First, we need to calculate [tex]\(4^2\)[/tex] and [tex]\(3^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
[tex]\[ 3^2 = 9 \][/tex]

### Step 2: Multiply the results
Next, multiply [tex]\(16\)[/tex] (which is [tex]\(4^2\)[/tex]) by [tex]\(9\)[/tex] (which is [tex]\(3^2\)[/tex]):
[tex]\[ 16 \times 9 = 144 \][/tex]

### Step 3: Raise the result to the power of 3
Now, raise the result from the previous step to the power of 3:
[tex]\[ 144^3 = 2985984 \][/tex]

### Step 4: Solve [tex]\(4 \times 4^2\)[/tex]
Next, we need to solve [tex]\(4 \times 4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
[tex]\[ 4 \times 16 = 64 \][/tex]

### Step 5: Add the results from Step 3 and Step 4
Finally, add the results from Step 3 and Step 4 together:
[tex]\[ 2985984 + 64 = 2986048 \][/tex]

Therefore:
[tex]\[\left(4^2 \times 3^2\right)^3+\left(4 \times 4^2\right)=2986048\][/tex]