Answer :
Certainly! To solve the system of equations by substitution, follow these steps:
Given the system of equations:
[tex]\[ \begin{array}{c} \left\{ \begin{array}{l} 3x + 4y = 4 \\ 2x + y = -9 \end{array} \right. \end{array} \][/tex]
1. Solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = -9 \][/tex]
Rearrange it to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = -9 - 2x \][/tex]
2. Substitute [tex]\( y = -9 - 2x \)[/tex] into the first equation [tex]\( 3x + 4y = 4 \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \][/tex]
3. Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \\ 3x - 36 - 8x = 4 \\ 3x - 8x - 36 = 4 \\ -5x - 36 = 4 \\ -5x = 4 + 36 \\ -5x = 40 \\ x = \frac{40}{-5} \\ x = -8 \][/tex]
4. Substitute [tex]\( x = -8 \)[/tex] back into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = -9 - 2(-8) \\ y = -9 + 16 \\ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-8, 7) \][/tex]
This provides the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations:
[tex]\[ \boxed{(-8, 7)} \][/tex]
Given the system of equations:
[tex]\[ \begin{array}{c} \left\{ \begin{array}{l} 3x + 4y = 4 \\ 2x + y = -9 \end{array} \right. \end{array} \][/tex]
1. Solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = -9 \][/tex]
Rearrange it to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = -9 - 2x \][/tex]
2. Substitute [tex]\( y = -9 - 2x \)[/tex] into the first equation [tex]\( 3x + 4y = 4 \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \][/tex]
3. Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \\ 3x - 36 - 8x = 4 \\ 3x - 8x - 36 = 4 \\ -5x - 36 = 4 \\ -5x = 4 + 36 \\ -5x = 40 \\ x = \frac{40}{-5} \\ x = -8 \][/tex]
4. Substitute [tex]\( x = -8 \)[/tex] back into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = -9 - 2(-8) \\ y = -9 + 16 \\ y = 7 \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-8, 7) \][/tex]
This provides the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations:
[tex]\[ \boxed{(-8, 7)} \][/tex]