Solve by substitution.

[tex]\[
\begin{array}{c}
\left\{
\begin{array}{l}
3x + 4y = 4 \\
2x + y = -9
\end{array}
\right.
\end{array}
\][/tex]



Answer :

Certainly! To solve the system of equations by substitution, follow these steps:

Given the system of equations:
[tex]\[ \begin{array}{c} \left\{ \begin{array}{l} 3x + 4y = 4 \\ 2x + y = -9 \end{array} \right. \end{array} \][/tex]

1. Solve the second equation for [tex]\( y \)[/tex]:
[tex]\[ 2x + y = -9 \][/tex]
Rearrange it to express [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = -9 - 2x \][/tex]

2. Substitute [tex]\( y = -9 - 2x \)[/tex] into the first equation [tex]\( 3x + 4y = 4 \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \][/tex]

3. Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 3x + 4(-9 - 2x) = 4 \\ 3x - 36 - 8x = 4 \\ 3x - 8x - 36 = 4 \\ -5x - 36 = 4 \\ -5x = 4 + 36 \\ -5x = 40 \\ x = \frac{40}{-5} \\ x = -8 \][/tex]

4. Substitute [tex]\( x = -8 \)[/tex] back into the expression for [tex]\( y \)[/tex]:
[tex]\[ y = -9 - 2(-8) \\ y = -9 + 16 \\ y = 7 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ (x, y) = (-8, 7) \][/tex]

This provides the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations:
[tex]\[ \boxed{(-8, 7)} \][/tex]