Find all excluded values for the expression.

[tex]\[
\frac{v+4}{v^2+5v+4}
\][/tex]

If there is more than one value, separate them with commas.

[tex]\[
v = \square
\][/tex]



Answer :

To determine the excluded values for the given expression

[tex]\[ \frac{v+4}{v^2 + 5v + 4} \][/tex]

we need to find the values of [tex]\( v \)[/tex] that make the denominator [tex]\( v^2 + 5v + 4 \)[/tex] equal to zero.

Step-by-Step Solution:

1. Identify the denominator:
The denominator of the expression is [tex]\( v^2 + 5v + 4 \)[/tex].

2. Set the denominator equal to zero:
To find the values that make the denominator zero, solve the equation:
[tex]\[ v^2 + 5v + 4 = 0 \][/tex]

3. Solve for [tex]\( v \)[/tex]:

This can be factored into:
[tex]\[ (v + 4)(v + 1) = 0 \][/tex]

So, solve for [tex]\( v \)[/tex] by setting each factor equal to zero:
[tex]\[ v + 4 = 0 \][/tex]
[tex]\[ v = -4 \][/tex]
and
[tex]\[ v + 1 = 0 \][/tex]
[tex]\[ v = -1 \][/tex]

Therefore, the excluded values, which are the values of [tex]\( v \)[/tex] that make the denominator zero, are:

[tex]\[ v = -4, -1 \][/tex]