Answer :

To determine which of the given functions is an odd function, we need to verify whether [tex]\( f(-x) = -f(x) \)[/tex] for each function.

An odd function must satisfy the condition [tex]\( f(-x) = -f(x) \)[/tex].

Let's analyze each function step-by-step:

1. Function: [tex]\( f(x) = 3x^2 + x \)[/tex]

- Evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 3(-x)^2 + (-x) = 3x^2 - x \][/tex]

- Compare [tex]\( f(-x) \)[/tex] with [tex]\( -f(x) \)[/tex]:
[tex]\[ -f(x) = -(3x^2 + x) = -3x^2 - x \][/tex]

- Conclusion:
[tex]\[ f(-x) = 3x^2 - x \quad \text{is not equal to} \quad -f(x) = -3x^2 - x \][/tex]
So, [tex]\( f(x) = 3x^2 + x \)[/tex] is not an odd function.

2. Function: [tex]\( f(x) = 4x^3 + 7 \)[/tex]

- Evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 4(-x)^3 + 7 = -4x^3 + 7 \][/tex]

- Compare [tex]\( f(-x) \)[/tex] with [tex]\( -f(x) \)[/tex]:
[tex]\[ -f(x) = -(4x^3 + 7) = -4x^3 - 7 \][/tex]

- Conclusion:
[tex]\[ f(-x) = -4x^3 + 7 \quad \text{is not equal to} \quad -f(x) = -4x^3 - 7 \][/tex]
So, [tex]\( f(x) = 4x^3 + 7 \)[/tex] is not an odd function.

3. Function: [tex]\( f(x) = 5x^2 + 9 \)[/tex]

- Evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 5(-x)^2 + 9 = 5x^2 + 9 \][/tex]

- Compare [tex]\( f(-x) \)[/tex] with [tex]\( -f(x) \)[/tex]:
[tex]\[ -f(x) = -(5x^2 + 9) = -5x^2 - 9 \][/tex]

- Conclusion:
[tex]\[ f(-x) = 5x^2 + 9 \quad \text{is not equal to} \quad -f(x) = -5x^2 - 9 \][/tex]
So, [tex]\( f(x) = 5x^2 + 9 \)[/tex] is not an odd function.

4. Function: [tex]\( f(x) = 6x^3 + 2x \)[/tex]

- Evaluate [tex]\( f(-x) \)[/tex]:
[tex]\[ f(-x) = 6(-x)^3 + 2(-x) = -6x^3 - 2x \][/tex]

- Compare [tex]\( f(-x) \)[/tex] with [tex]\( -f(x) \)[/tex]:
[tex]\[ -f(x) = -(6x^3 + 2x) = -6x^3 - 2x \][/tex]

- Conclusion:
[tex]\[ f(-x) = -6x^3 - 2x \quad \text{is equal to} \quad -f(x) = -6x^3 - 2x \][/tex]
So, [tex]\( f(x) = 6x^3 + 2x \)[/tex] is an odd function.

Based on the analysis, the odd function among the given options is:

[tex]\[ f(x) = 6x^3 + 2x \][/tex]