Select the correct answer.

Evaluate the following expression when [tex]$x = -5$[/tex] and [tex]$y = 25$[/tex]:

[tex]\frac{5|x| - y^3}{x}[/tex]

A. -3,130

B. -630

C. 620

D. 3,120



Answer :

To solve the expression [tex]\(\frac{5|x| - y^3}{x}\)[/tex] with [tex]\(x = -5\)[/tex] and [tex]\(y = 25\)[/tex], we can follow a detailed step-by-step approach:

1. Identify the Absolute Value of [tex]\(x\)[/tex]:
Since [tex]\(x = -5\)[/tex], calculate the absolute value of [tex]\(x\)[/tex]:
[tex]\[ |x| = |-5| = 5 \][/tex]

2. Calculate the Numerator:
Substitute [tex]\(x\)[/tex] and [tex]\(y\)[/tex] into the expression for the numerator [tex]\(5|x| - y^3\)[/tex]:
[tex]\[ 5|x| = 5 \times 5 = 25 \][/tex]

Next, compute [tex]\(y^3\)[/tex]:
[tex]\[ y^3 = 25^3 = 25 \times 25 \times 25 = 625 \times 25 = 15625 \][/tex]

Therefore, the numerator is:
[tex]\[ 5|x| - y^3 = 25 - 15625 = -15600 \][/tex]

3. Identify the Denominator:
The denominator is simply [tex]\(x\)[/tex], which is:
[tex]\[ x = -5 \][/tex]

4. Calculate the Expression:
Now, substitute the numerator and the denominator into the expression [tex]\(\frac{5|x| - y^3}{x}\)[/tex]:
[tex]\[ \frac{5|x| - y^3}{x} = \frac{-15600}{-5} \][/tex]

Divide the numerator by the denominator:
[tex]\[ \frac{-15600}{-5} = 3120 \][/tex]

Therefore, the value of the expression [tex]\(\frac{5|x| - y^3}{x}\)[/tex] when [tex]\(x = -5\)[/tex] and [tex]\(y = 25\)[/tex] is [tex]\(3120\)[/tex].
So, the correct answer is:
[tex]\[ \boxed{3120} \][/tex]

This matches option D. Therefore, the correct answer is D.