Which statement best describes how to determine whether [tex]f(x)=x^3+5x+1[/tex] is an even function?

A. Determine whether [tex]-\left(x^3+5x+1\right)[/tex] is equivalent to [tex]x^3+5x+1[/tex].
B. Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]x^3+5x+1[/tex].
C. Determine whether [tex]-x^3+5x+1[/tex] is equivalent to [tex]-\left(x^3+5x+1\right)[/tex].
D. Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]-\left(x^3+5x+1\right)[/tex].



Answer :

To determine whether the function [tex]\( f(x) = x^3 + 5x + 1 \)[/tex] is an even function, you need to compare the values of [tex]\( f(-x) \)[/tex] and [tex]\( f(x) \)[/tex].

The correct approach is to determine whether [tex]\( (-x)^3 + 5(-x) + 1 \)[/tex] is equivalent to [tex]\( x^3 + 5x + 1 \)[/tex].

Let's break this down step-by-step:

1. Substitute [tex]\( -x \)[/tex] into [tex]\( f(x) \)[/tex]:
[tex]\[ f(-x) = (-x)^3 + 5(-x) + 1 \][/tex]

2. Simplify [tex]\( f(-x) \)[/tex]:
[tex]\[ (-x)^3 = -x^3 \][/tex]
[tex]\[ 5(-x) = -5x \][/tex]
Substituting these into the equation gives:
[tex]\[ f(-x) = -x^3 - 5x + 1 \][/tex]

3. Compare [tex]\( f(-x) \)[/tex] with [tex]\( f(x) \)[/tex]:
[tex]\[ f(x) = x^3 + 5x + 1 \][/tex]
[tex]\[ f(-x) = -x^3 - 5x + 1 \][/tex]

As you can see, these two expressions are not equivalent. For [tex]\( f(x) = x^3 + 5x + 1 \)[/tex] to be an even function, [tex]\( f(-x) \)[/tex] must equal [tex]\( f(x) \)[/tex]. Since [tex]\( -x^3 - 5x + 1 \)[/tex] is not the same as [tex]\( x^3 + 5x + 1 \)[/tex], the function [tex]\( f(x) \)[/tex] is not an even function.

Hence, the correct statement is:
"Determine whether [tex]\( (-x)^3 + 5(-x) + 1 \)[/tex] is equivalent to [tex]\( x^3 + 5 x + 1 \)[/tex]."