Lone ordered a shed to hold her gardening supplies. The shed had a length of 18.25 ft, a width of 15 ft, and a height of [tex]$5 \frac{1}{5}$[/tex] ft. Determine the volume, [tex]V[/tex], using the formula [tex]V = l \times w \times h[/tex].

A. 1,423.5 cubic ft
B. 1,373.5 cubic ft
C. 142.35 cubic ft
D. 38.45 cubic ft



Answer :

To find the volume [tex]\( V \)[/tex] of the shed, we need to use the formula for the volume of a rectangular prism:

[tex]\[ V = \text{length} \times \text{width} \times \text{height} \][/tex]

### Step-by-Step Solution:

1. Identify the dimensions:

- Length: [tex]\( 18.25 \)[/tex] feet
- Width: [tex]\( 15 \)[/tex] feet
- Height: [tex]\( 5 \frac{1}{5} \)[/tex] feet

2. Convert the mixed fraction to a decimal:

The height is given as [tex]\( 5 \frac{1}{5} \)[/tex] feet. This can be converted to an improper fraction and then to a decimal:

[tex]\[ 5 \frac{1}{5} = 5 + \frac{1}{5} = 5 + 0.2 = 5.2 \][/tex] feet

3. Calculate the volume:

Use the formula [tex]\( V = \text{length} \times \text{width} \times \text{height} \)[/tex]:

[tex]\[ V = 18.25 \times 15 \times 5.2 \][/tex]

Performing the multiplication step-by-step:

- First, calculate [tex]\( 18.25 \times 15 \)[/tex].

- Then, multiply the result by 5.2.

After calculating above we get that the volume is:
[tex]\[ V = 1423.5 \text{ cubic feet }\][/tex]

Thus, the correct choice is:
[tex]\[ 1423.5 \text{ cubic feet} \][/tex]