Write the partial fraction identities of the following:

[tex]\[
\begin{array}{l}
\frac{5x-3}{\left(x^2-x+3\right)\left(x^2-3x-1\right)} \\
\frac{x^2+2x-5}{\left(2-5x-x^2\right)\left(x^2-x-1\right)} \\
\frac{x-2}{x^2+3x+2} \\
\frac{x^3-x^2-3x}{\left(x^2+6x-2\right)\left(2-x^2\right)\left(2x^2-7x+1\right)} \\
\frac{x^2+2x-5}{\left(4-x^2\right)\left(2x^2-3x+1\right)}
\end{array}
\][/tex]



Answer :

Sure, I'll guide you through the process of finding the partial fraction decomposition for each of these expressions:

1. For the fraction [tex]\(\frac{5x-3}{(x^2 - x + 3)(x^2 - 3x - 1)}\)[/tex]:
[tex]\[ \frac{5x-3}{(x^2 - x + 3)(x^2 - 3x - 1)} = \frac{13x - 20}{18(x^2 - 3x - 1)} - \frac{13x + 6}{18(x^2 - x + 3)} \][/tex]

2. For the fraction [tex]\(\frac{x^2 + 2x - 5}{(2 - 5x - x^2)(x^2 - x - 1)}\)[/tex]:
[tex]\[ \frac{x^2 + 2x - 5}{(2 - 5x - x^2)(x^2 - x - 1)} = -\frac{3(7x + 43)}{41(x^2 + 5x - 2)} + \frac{21x - 38}{41(x^2 - x - 1)} \][/tex]

3. For the fraction [tex]\(\frac{x-2}{x^2 + 3x + 2}\)[/tex]:
First, factor the denominator: [tex]\(x^2 + 3x + 2 = (x + 1)(x + 2)\)[/tex].
[tex]\[ \frac{x-2}{(x + 1)(x + 2)} = \frac{4}{x + 2} - \frac{3}{x + 1} \][/tex]

4. For the fraction [tex]\(\frac{x^3 - x^2 - 3x}{(x^2 + 6x - 2)(2 - x^2)(2x^2 - 7x + 1)}\)[/tex]:
[tex]\[ \frac{x^3 - x^2 - 3x}{(x^2 + 6x - 2)(2 - x^2)(2x^2 - 7x + 1)} = -\frac{12x + 19}{438(x^2 - 2)} + \frac{54x + 385}{762(x^2 + 6x - 2)} - \frac{806x - 2141}{9271(2x^2 - 7x + 1)} \][/tex]

5. For the fraction [tex]\(\frac{x^2 + 2x - 5}{(4 - x^2)(2x^2 - 3x + 1)}\)[/tex]:
Notice that [tex]\(4 - x^2\)[/tex] can be rewritten as [tex]\((2 - x)(2 + x)\)[/tex].
[tex]\[ \frac{x^2 + 2x - 5}{(4 - x^2)(2x^2 - 3x + 1)} = \frac{2}{2x - 1} - \frac{1}{12(x + 2)} - \frac{2}{3(x - 1)} - \frac{1}{4(x - 2)} \][/tex]

These are the partial fraction identities for each of the fractions provided.