Right triangle [tex]$LMN$[/tex] has vertices [tex]$L(7, -3)$[/tex], [tex]$M(7, -8)$[/tex], and [tex]$N(10, -8)$[/tex]. The triangle is translated on the coordinate plane so the coordinates of [tex]$L'$[/tex] are [tex]$(-1, 8)$[/tex].

Which rule was used to translate the image?

A. [tex]$(x, y) \rightarrow (x + 6, y - 5)$[/tex]
B. [tex]$(x, y) \rightarrow (x - 6, y + 5)$[/tex]
C. [tex]$(x, y) \rightarrow (x + 8, y - 11)$[/tex]
D. [tex]$(x, y) \rightarrow (x - 8, y + 11)$[/tex]



Answer :

To determine the rule used to translate triangle [tex]\(LMN\)[/tex], let's focus on the movement of point [tex]\(L\)[/tex], which initially has coordinates [tex]\(L(7, -3)\)[/tex] and is translated to [tex]\(L'(-1, 8)\)[/tex].

Step-by-step, we analyze the changes in the coordinates:

1. Calculate the change in the x-coordinate:
- The original x-coordinate of [tex]\(L\)[/tex] is [tex]\(7\)[/tex].
- The translated x-coordinate of [tex]\(L'\)[/tex] is [tex]\(-1\)[/tex].
- The difference (change in x) can be calculated as:
[tex]\[ \Delta x = L'_{x} - L_{x} = -1 - 7 = -8 \][/tex]

2. Calculate the change in the y-coordinate:
- The original y-coordinate of [tex]\(L\)[/tex] is [tex]\(-3\)[/tex].
- The translated y-coordinate of [tex]\(L'\)[/tex] is [tex]\(8\)[/tex].
- The difference (change in y) can be calculated as:
[tex]\[ \Delta y = L'_{y} - L_{y} = 8 - (-3) = 8 + 3 = 11 \][/tex]

3. Establish the translation rule:
Based on the changes calculated, the rule of translation for this transformation can be formulated. Each point [tex]\((x, y)\)[/tex] on the triangle [tex]\(LMN\)[/tex] is translated by [tex]\(\Delta x = -8\)[/tex] and [tex]\(\Delta y = 11\)[/tex]. Therefore, the translation rule is:
[tex]\[ (x, y) \rightarrow (x - 8, y + 11) \][/tex]

Since we have computed the changes [tex]\(\Delta x = -8\)[/tex] and [tex]\(\Delta y = 11\)[/tex], the correct translation rule is:
[tex]\[ (x, y) \rightarrow (x-8, y+11) \][/tex]

So, the answer is:
[tex]\[ \boxed{(x, y) \rightarrow (x-8, y+11)} \][/tex]