10. Express [tex]$\frac{3 \frac{1}{3}-2 \frac{1}{2}}{\frac{5}{12}}$[/tex] in its simplest form.

A. [tex]$\frac{1}{2}$[/tex]

B. [tex][tex]$\frac{25}{72}$[/tex][/tex]

C. 2

D. [tex]$2 \frac{4}{5}$[/tex]



Answer :

Sure, let's solve the problem step by step.

1. Convert the mixed numbers to improper fractions:

[tex]\[ 3 \frac{1}{3} \text{ can be written as } 3 + \frac{1}{3} = \frac{9}{3} + \frac{1}{3} = \frac{10}{3} \][/tex]

[tex]\[ 2 \frac{1}{2} \text{ can be written as } 2 + \frac{1}{2} = \frac{4}{2} + \frac{1}{2} = \frac{5}{2} \][/tex]

2. Subtract the improper fractions:

The fractions have different denominators, so we need a common denominator to subtract them. The common denominator for 3 and 2 is 6.

[tex]\[ \frac{10}{3} = \frac{10 \times 2}{3 \times 2} = \frac{20}{6} \][/tex]

[tex]\[ \frac{5}{2} = \frac{5 \times 3}{2 \times 3} = \frac{15}{6} \][/tex]

Now subtract them:

[tex]\[ \frac{20}{6} - \frac{15}{6} = \frac{20 - 15}{6} = \frac{5}{6} \][/tex]

3. Divide the result by [tex]\(\frac{5}{12}\)[/tex]:

Dividing by a fraction is the same as multiplying by its reciprocal.

[tex]\[ \frac{\frac{5}{6}}{\frac{5}{12}} = \frac{5}{6} \times \frac{12}{5} \][/tex]

Simplify by canceling out the common factors:

[tex]\[ \frac{5 \times 12}{6 \times 5} = \frac{12}{6} = 2 \][/tex]

4. Final result:

The correct answer is [tex]\(2\)[/tex].

So, the simplest form of [tex]\(\frac{3 \frac{1}{3} - 2 \frac{1}{2}}{\frac{5}{12}}\)[/tex] is [tex]\(\boxed{2}\)[/tex].

Thus, the correct option is:
C 2